An Ordered Approach to Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space

John Fearnley¹, Sanjay Jain², Sven Schewe¹, Frank Stephan² and Dominik Wojtczak¹

¹University of Liverpool

²National University of Singapore

Parity Games

Open question: are parity games in P?

Recent Progress:

Parity games can be solved in $O(n^{\log(d)+6})$ time and space (Calude, Jain, Khoussainov, Li, Stephan, 2017)

This Paper

Problem:

The CJKLS algorithm uses quasi-polynomial time and space

Solution:

Come up with a quasi-polynomial value iteration algorithm

- Using small-progress measures (Jurdziński, Lazić, 2017)
- Using the original data structure
 (F., Jain, Schewe, Stephan, Wojtczak, 2017)

i-sequences

$$-$$
 8 4 2 \Longrightarrow 9 $-$

Our work

We create a value iteration algorithm

- ▶ Based on the CJKLS data structure
- ... in reverse
- ... with an appropriate ordering

Results

Another quasipolynomial-time polynomial-space algorithm

Actually nearly linear space

Also

- Better upper bounds for certain special cases
- Exponential examples (this algorithm and CJKLS)
- Implementation