Quantitative Reductions and Vertex-Ranked Games

Alexander Weinert

Saarland University

September 13th, 2017

Highlights 2017 - London
Reachability Games

Winning condition: Play reaches either \(\star \) or \(\star\star \) or \(\star\star\star \)
Reachability Games

Winning condition: Play reaches either \(\bigstar \) or \(\bigstar \) or \(\bigstar \)
Winning condition: Play reaches either 🌸 or 🌻 or 🌼
Winning condition: Play reaches either \(\star \) or \(\diamond \) or \(\triangle \)
Reachability Games

Winning condition: Play reaches either \(\square \) or \(\pentagon \) or \(\triangle \)
Reachability

✓
Generalized Reachability: The Problem

Winning condition:

![Diagram of a reachability game with nodes and edges representing the game's structure.](image-url)
Generalized Reachability: The Problem

Winning condition:
Reach one from \(\{\text{pentagon}, \text{square}\} \) and one from \(\{\text{triangle}, \text{circle}\} \).
Winning condition: Reach some memory state S with $S \cap \{0, 0\} \neq \emptyset$ and with $S \cap \{0, 0\} \neq \emptyset$.

Reachability Condition
Winning condition: Reach some memory state S with $S \cap \{0, 0\} \neq \emptyset$ and with $S \cap \{0, 0\} \neq \emptyset$.
Generalized Reachability: One Solution

Winning condition: Reach some memory state S with $\mathcal{S} \cap \{0, 0\} \neq \emptyset$ and with $\mathcal{S} \cap \{0, 0\} \neq \emptyset$.
Winning condition: Reach some memory state S with $S \cap \{0\} \neq \emptyset$ and with $S \cap \{0\} \neq \emptyset$.

Reachability Condition

Generalized Reachability: One Solution
Winning condition: Reach some memory state \(S \) with \(S \cap \{0\} \neq \emptyset \) and with \(S \cap \{1\} \neq \emptyset \).
Winning condition: Reach some memory state S with $S \cap \{0, 0\} \neq \emptyset$ and $S \cap \{0, 0\} \neq \emptyset$.
Winning condition:
Generalized Reachability: One Solution

Winning condition: Reach some memory state S with

$$S \cap \{\text{pentagon, hexagon}\} \neq \emptyset \text{ and with } S \cap \{\text{hexagon, pentagon}\} \neq \emptyset$$
Winning condition: Reach some memory state \(S \) with \(S \cap \{,\} \neq \emptyset \) and with \(S \cap \{,\} \neq \emptyset \)

Reachability Condition
Reachability

✔
The Big Picture

Reachability

Generalized Reachability
The Big Picture

Reachability \checkmark Generalized Reachability
The Big Picture

Quantitative

Qualitative

Reachability

Generalized Reachability

✓
Assign cost to each play.
Assign cost to each play.

\[C_{\rho} = \begin{cases}
0 & \text{if } \{0,0\} \text{ and } \{0,0\} \text{ are visited} \\
1 & \text{if one of them is visited} \\
2 & \text{if neither is visited}
\end{cases} \]
Assign cost to each play.

\[
Cst(\rho) = \begin{cases}
0 & \text{if } \{\text{pink}, \text{yellow}\} \text{ and } \{\text{yellow}, \text{blue}\} \text{ are visited} \\
1 & \text{if one of them is visited} \\
2 & \text{if neither is visited}
\end{cases}
\]
The Big Picture

Quantitative
- Generalized
- Reachability

Qualitative

Quantitative Reductions and Vertex-Ranked Games
The Big Picture

Quantitative Reachability

Qualitative

Quantitative

Generalized Reachability

Cst = 0

Cst = 1

Cst = 2

Reachability

Generalized Reachability

Alexander Weinert Saarland University Quantitative Reductions and Vertex-Ranked Games 8/9
The Big Picture

Quantitative Reductions and Vertex-Ranked Games
The Big Picture

- **Vertex-Ranked Reachability**
- **Quantitative Generalized Reachability**

- **Quantitative**
 - \(Cst = 0 \)
 - \(Cst = 1 \)
 - \(Cst = 2 \)

- **Qualitative**

- **Reachability**
- **Generalized Reachability**
The Big Picture

Vertex-Ranked Reachability → Quantitative Generalized Reachability

Cst = 0

Cst = 1

Cst = 2

Qualitative

Reachability

Generalized Reachability

Quantitative
The Big Picture

Vertex-Ranked Reachability

Quantitative

Generalized Reachability

Cst = 0

Cst = 1

Cst = 2

Reachability

Generalized Reachability

Qualitative

Quantitative Reductions and Vertex-Ranked Games
Conclusion

Contribution

- Lifted reductions to quantitative games
Contribution

- Lifted reductions to quantitative games
- Solved wide range of general-purpose quantitative games
Conclusion

Contribution

- Lifted reductions to quantitative games
- Solved wide range of general-purpose quantitative games

Next Steps
Conclusion

Contribution

- Lifted reductions to quantitative games
- Solved wide range of general-purpose quantitative games

Next Steps
Conclusion

Contribution

- Lifted reductions to quantitative games
- Solved wide range of general-purpose quantitative games

Next Steps