TREE-TO-GRAPH TRANSDUCTIONS

Johanna Björklund Highlights 2017

Dept. Computing Science, Umeå University

Generate AMRs through the combination of

- \cdot a regular tree grammar,
- $\cdot\,$ a sequence of linear top-down tree transducers, and
- \cdot a folding function that merges selected nodes.

а

Let G be an regular tree grammar and T_1, \ldots, T_n be linear top-down tree transducers, all over the ranked alphabet Γ . Given a graph $g \in \mathbb{G}_{\Gamma}$, is $g \in \mathcal{L}(G \circ T_1 \circ \cdots \circ T_n \circ F)$?

Theorem

For every RTG G, sequence of TDTTs T_1, \ldots, T_n , and $k \in \mathbb{N}$, there is a polynomial p_k such that the membership problem is decidable for every $g \in \mathbb{G}_{\Gamma}$ with treewidth k in $O(p_k(|g|))$.

Theorem

Let $t \in \mathbb{T}_{\Gamma}$ be a tree with folding depth k, then the treewidth of [F](t) is at at most k + 1, and this is a tight upper bound.

johanna@cs.umu.se

- $\cdot\,$ Theoretical work on formal foundations of language processing
- Applied work in media analysis (Codemill AB, Smart Video Nordic, Accurate Player)

