Order-Preserving DAG Grammars: Parsing, Complexity and Learning

Henrik Björklund

Joint work with
Johanna Björklund, Frank Drewes, and Petter Ericson

Umeå University

Highlights, September 23, 2017
Motivation: Semantic graphs

One type of semantic graphs: Abstract Meaning Representations

AMR for "the boy thinks that the girl likes him"
Abstract Meaning Representations

Properties of AMRs:
- Directed and acyclic
- Reentrancies (not trees)
- Any number of modifiers (i.e. no fixed rank)
- No formalized grammar
Long term goals

Parallel parsing of natural language sentences, building both syntax trees and semantic graphs.
Long term goals

Parallel parsing of natural language sentences, building both syntax trees and semantic graphs.

Transformation of semantic graphs into natural language sentences.
Hyperedge replacement grammars
Hyperedge replacement grammars

A → B

C → a
Uniform vs. non-uniform parsing

For database theoreticians: Think data complexity vs. combined complexity

For verification people: Think model complexity vs. combined complexity
Uniform vs. non-uniform parsing

For database theoreticians: Think data complexity vs. combined complexity

For verification people: Think model complexity vs. combined complexity

Consider a grammar where we only have rules of the following forms:

\[
A \rightarrow a \\
A \rightarrow B \quad C
\]
Order-preserving DAG grammars

Graph parsing is hard.
Order-preserving DAG grammars

Graph parsing is hard.

To achieve uniform polynomial parsing, we need to heavily restrict the right-hand sides.
Order-preserving DAG grammars

Graph parsing is hard.

To achieve uniform polynomial parsing, we need to heavily restrict the right-hand sides.
We develop an algorithm for learning OPDGs from a **Minimally Adequate Teacher** (Angluin).

The teacher can answer

- **equivalence queries** (Is this the correct grammar?)
- **membership queries** (Does this graph belong to the language of the grammar?)
Concatenation
A Myhill-Nerode theorem

Theorem. A DAG language L can be generated by an OPDG if and only if \equiv_L has finite index. If \equiv_L has finite index, there is a unique minimal unambiguous OPDG for L.
Theorem. An OPDG G can be learned from a MAT in time polynomial in $|G|$ and the combined sizes of the counterexamples provided by the teacher.
The end

Thank you for listening!