
1/9

Interleaved scope of games and automata

Murdoch J. Gabbay
Thanks to the Highlights organisers.

14 September 2017

http://www.gabbay.org.uk

2/9

Two kinds of scope

Two kinds of scope:

1. Nested. Usually this:∫
f (a)da, ∀a.∀b.a=b, and λa.λb.ab.

2. Interleaved. Usually this:

alloc a ; alloc b ; do X ; dealloc a ; dealloc b.

Above, alloc/dealloc could be (de)allocating many things:
memory, a file handle, etc.

(Above, do X could variously be called a variable, meta-variable,
unknown, or hole. I’ll call it an unknown.)

3/9

We need a more compact notation

alloc a ; alloc b ; do X ; dealloc a ; dealloc b

becomes
〈a 〈b X b〉 a〉 .

So:

I alloc becomes 〈
I dealloc becomes 〉
I do X becomes X .

I Syntax is naturally a sequence (not a tree).

I Syntax may be composed, as in 〈a 〈b ◦ b〉 a〉 equals 〈a 〈b b〉 a〉 .

4/9

Nested scope is a special case of interleaved scope

λa.λb.ab

becomes
λ〈aλ〈ba bb〉 a〉 .

5/9

Two pictures: nested contrasted with interleaved

Nested (like λ) 〈a 〈b b〉 a〉 = • yy %%•
�� ��

• •

Interleaved (like alloc) 〈a 〈b a〉 b〉 = • dd ::• dd ::• •

Key difference: In interleaved scope, arrows can cross, as above.

Key difference: In interleaved scope, arrows can ‘dangle’, as
below:

〈a 〈b = • zz •
{{

a〉 b〉 = •
##

•$$

So there is a notion of time. Bindings may dangle into past and
future.

6/9

Nested scope as a special case of interleaved scope

Nested (like λ) 〈a 〈b b〉 a〉 = • yy %%•
�� ��

• •

Interleaved (like alloc) 〈a 〈b a〉 b〉 = • dd ::• dd ::• •

Perhaps nested scope is to interleaved scope as groups are
semigroups: important special case of more general structure.

7/9

Challenges

1. Compositional semantics of interleaved scope, including
crossing and dangling arrows.

2. Development of compositional algebraic syntaxes (logics with
unknowns representing diagram-fragments, whose primitive
assertion is equality).

Compositionality is hard, because scope can traverse unknowns X ,
and interleave, and dangle into the ‘future’ and the ‘past’.

Example questions: what do the expressions

〈aX and X a〉

denote?

How can we α-convert a in this syntax?

8/9

Conclusions 1

Our challenge is creating syntax and semantics to interleaved scope,
α-equivalence, and unknowns –

1. without insisting the user work only with ground sequences (so
we don’t know what’s in the holes) and

2. without insisting we have complete knowledge of ‘past’ and
‘future’ (so we have truly dangling bindings).

That’s the challenge.

Remarkably, it seems possible to give a clean resolution to it and to
build some decently elegant mathematics around it.

9/9

Conclusions 2

I conclude with my own view of the overall development, using
language from algebra:

1. Universal algebra is a logic and denotation for equality over
ordinary sets and ordinary operations between them.

2. Nominal algebra is ditto, for sets with names and possibly
binding operations between them.

3. This new thing is ditto, for sets with names and interleaved
binding.

