Nondeterminism does not make regular separability harder

Wojciech Czerwiński

Lorenzo Clemente

Sławomir Lasota

Charles Paperman

University of Warsaw

Universite Paris-Diderot

Highlights 2017, Warsaw

languages of finite words

Regularity problem for C

Regularity problem for C

Input: a languages from *C*

Regularity problem for C

Input: a languages from *C*

Question: is this language regular?

Regularity problem for C

Input: a languages from *C* Setting Parametric in class C Question: is this language regular?

nondet. PDA

det. PDA [Valiant '75]

det. OCA

nondet. OCA

nondet. OCN = 1-VASS
[Valk, Vidal-Naquet '81]

nondet. Parikh automata = integer VASS

[Cadilhac, Finkel, McKenzie '11]

undecidable decidable

•regularity

nondet. PDA

det. PDA [Valiant '75]

det. OCA

det. Parikh automata [Cadilhac, Finkel, McKenzie '11]

nondet. OCA

nondet. OCN = 1-VASS
[Valk, Vidal-Naquet '81]

nondet. Parikh automata = integer VASS

[Cadilhac, Finkel, McKenzie '11]

undecidable decidable

Regular separability problem for C

Regular separability problem for C

Input: two (disjoint) languages L, K from C

Regular separability problem for C

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?

Regular separability problem for C

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?

Regular separability problem for C

Input: two (disjoint) languages L, K from C

Question: are these two languages **separated** by a regular language? I.e., is there a regular language R including L and disjoint from K?

Regular separability problem for C

Input: two (disjoint) languages L, K from C

Question: are these two languages **separated** by a regular language? I.e., is there a regular language R including L and disjoint from K?

L and its complement are regular separable iff L is regular

L and its complement are regular separable iff L is regular

Regular separability subsumes regularity whenever *C* is effectively closed under complement

Fact: Languages of a nondeterministic OCA are images of languages of deterministic OCA under letter-to-letter homomorphisms

Fact: Languages of a nondeterministic OCA are images of languages of deterministic OCA under letter-to-letter homomorphisms

Put C = languages of deterministic OCA

Fact: Languages of a nondeterministic OCA are images of languages of deterministic OCA under letter-to-letter homomorphisms

Put C = languages of deterministic OCA $\mathcal{H} = \text{letter-to-letter homomorphisms}$

Fact: Languages of a nondeterministic OCA are images of languages of deterministic OCA under letter-to-letter homomorphisms

Put $C = \text{languages of } \mathbf{deterministic } \mathbf{OCA}$ $\mathcal{H} = \mathbf{letter\text{-}to\text{-}letter } \mathbf{homomorphisms}$ Then $\mathcal{H}(C) = \text{languages of } \mathbf{nondeterministic } \mathbf{OCA}$ (effectively)

Fact: Languages of a nondeterministic OCA are images of languages of deterministic OCA under letter-to-letter homomorphisms

Put C = languages of deterministic OCA

 \mathcal{H} = letter-to-letter homomorphisms

Then $\mathcal{H}(C)$ = languages of **nondeterministic OCA** (effectively)

Fact: both C and $\mathcal{H}(C)$ are effectively closed under inverse images of homomorphisms from \mathcal{H}

Lemma:

Lemma:

Regular separability of $\mathcal{H}(C)$ reduces to regular separability of C

Proof:

Lemma:

Lemma:

Lemma:

Lemma:

Lemma:

Lemma:

nondet. PDA [Szymanski, Williams '76] 'regularity [Hunt '82] nondet. OCA [Czerwiński, L. '17] det. PDA [Kopczyński '16] [Valiant '75] regular separability det. OCA nondet. OCN = 1-VASS [Czerwiński, L. '17] [Czerwiński, L. '17] [Valk, Vidal-Naquet '81] nondet. Parikh automata = integer VASS [Clemente, Czerwiński, L., Paperman '17] undecidable [Cadilhac, Finkel, McKenzie '11] det. Parikh automata decidable [Cadilhac, Finkel, McKenzie '11] coverability VASS [Czerwiński, L. '?] commutative closures of VASS [Worrell '?] [Clemente, Czerwiński, L., Paperman '17] undecidable

decidable

nondet. PDA [Szymanski, Williams '76] regularity [Hunt '82] nondet. OCA [Czerwiński, L. '17] det. PDA [Kopczyński '16] [Valiant '75] regular separability det. OCA nondet. OCN = 1-VASS [Czerwiński, L. '17] [Czerwiński, L. '17] [Valk, Vidal-Naquet '81] nondet. Parikh automata = integer VASS [Clemente, Czerwiński, L., Paperman '17] undecidable [Cadilhac, Finkel, McKenzie '11] det. Parikh automata decidable [Cadilhac, Finkel, McKenzie '11] coverability VASS [Czerwiński, L. '?] commutative closures of VASS [Worrell '?] [Clemente, Czerwiński, L., Paperman '17] undecidable