Regular separability of Parikh automata languages

L. Clemente, W. Czerwiński, S. Lasota (University of Warsaw)
Ch. Paperman (University of Bordeaux)

London, September 2017
Regular separability of Parikh automata languages \(\mathbb{Z} \)-Petri nets

L. Clemente, W. Czerwiński, S. Lasota (University of Warsaw)
Ch. Paperman (University of Bordeaux)

London, September 2017
1. Problem: Regular separability of \mathbb{Z}-Petri nets languages.

2. Result: The problem is decidable.

Main techniques

1. Deterministic = nondeterministic. (Presented before by Sławek Lasota.)

2. Regular partitioning.

3. Reduce to separability of bounded languages. (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)
Regular separability

A

B
Regular separability

“A” and “B” with “simple” (regular) arrow pointing to the right.
Regular separability

A

B

“simple” (regular)

recognised by Petri nets
Decidable separability

1. 1CN [Czerwiński, Lasota LICS’17] (one \(\mathbb{N}\)-counter, with zero test).

 Via the \textit{Regular Overapproximation} technique

\[\rightarrow\] next talk by Wojtek Czerwiński.
Decidable separability

1. 1CN [Czerwiński, Lasota LICS’17] (one \mathbb{N}-counter, with zero test).

 Via the Regular Overapproximation technique → next talk by Wojtek Czerwiński.

2. \mathbb{Z}-PN [C., Czerwiński, Lasota, Paperman ICALP’17] (many \mathbb{Z}-counters; no zero test).
Decidable separability

1. 1CN [Czerwiński, Lasota LICS’17] (one \(\mathbb{N}\)-counter, with zero test).

 Via the Regular Overapproximation technique
 \(\rightarrow\) next talk by Wojtek Czerwiński.

2. \(\mathbb{Z}\)-PN [C., Czerwiński, Lasota, Paperman ICALP’17]
 (many \(\mathbb{Z}\)-counters; no zero test).

3. [Conjecture] Separability of \(\mathbb{N}\)-PN languages is decidable.
Decidable separability

1. 1CN [Czerwiński, Lasota LICS’17] (one \mathbb{N}-counter, with zero test).

 Via the *Regular Overapproximation* technique → next talk by Wojtek Czerwiński.

2. \mathbb{Z}-PN [C., Czerwiński, Lasota, Paperman ICALP’17] (many \mathbb{Z}-counters; no zero test).

3. [Conjecture] Separability of \mathbb{N}-PN languages is decidable.
Regular separability of \(\mathbb{Z} \text{-PN} \)

What is a \(\mathbb{Z} \)-Petri net?

Nondeterministic finite automaton \(A \) + finitely many \(\mathbb{Z} \)-counters (no zero test).

Accepting runs: counters start and end with value zero.
Regular separability of \mathbb{Z}-PN

What is a \mathbb{Z}-Petri net?

Nondeterministic finite automaton A + finitely many \mathbb{Z}-counters (no zero test).

Accepting runs: counters start and end with value zero.

Theorem. Regular separability is decidable for \mathbb{Z}-PN.
1. Deterministic = nondeterministic. (Presented before by Sławek Lasota.) → assume DFA
Solution

1. Deterministic = nondeterministic. (Presented before by Sławek Lasota.)

2. Regular partitioning.

assume DFA
Solution

1. Deterministic = nondeterministic. \[\Rightarrow\] assume DFA (Presented before by Sławek Lasota.)

2. Regular partitioning.

3. Reduce to separability of *bounded languages*. (Bounded languages are of the form, e.g., \(x^*y^*z^*\) for \(x, y, z \in \Sigma^*\).)
1. Deterministic = nondeterministic.
(Presented before by Sławek Lasota.)

2. Regular partitioning.

3. Reduce to separability of bounded languages.
(Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)
Regular partitioning

A, B separable iff, for every i, $A \cap R_i$, $B \cap R_i$ separable
Regular partitioning: Application
Regular partitioning: Application
Regular partitioning: Application
Regular partitioning: Application

\[R(A) \cap R(B) \]
Regular partitioning: Application

\[\Sigma^* \setminus R(A) \cap R(B) \]

We can assume the \textit{same underlying DFA} for the two \(\mathbb{Z} \)-PNs.
1. Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
 \[\rightarrow\] assume DFA

2. Regular partitioning. ✔

3. Reduce to separability of \textit{bounded languages}.
 (Bounded languages are of the form, e.g., \(x^*y^*z^*\) for \(x, y, z \in \Sigma^*\).)
Consider *simple cycles* instead of single transitions:

- Cycles can be rearranged (once enough states have been visited).
- We can fix an order for cycles \rightarrow bounded language.
Lemma. \(L(A), L(B) \) are regular separable iff \(L(A), L(B) \) are regular separable in \(x^*y^*z^* \)
Reduction to bounded languages

regular separability of \(\mathbb{Z} \text{-PN languages} \)
Reduction to bounded languages

Regular separability of \mathbb{Z}-PN languages \implies bounded regular separability of bounded \mathbb{Z}-PN languages
Reduction to bounded languages

\[\Pi(L(A)) \rightarrow \Pi(x^* y^* z^*) \rightarrow \Pi(L(B)) \]

Regular separability of \(\mathbb{Z} \)-PN languages \(\rightarrow \) bounded regular separability of bounded \(\mathbb{Z} \)-PN languages
Reduction to bounded languages

\[\Pi(L(A)) \quad \text{semilinear} \quad \Pi(L(B)) \]

\[\Pi(R) \quad \text{unary} \]

regular separability of \(\mathbb{Z} \)-PN languages \(\rightarrow \) bounded regular separability of bounded \(\mathbb{Z} \)-PN languages
Reduction to bounded languages

- Regular separability of \mathbb{Z}-PN languages

- Bounded regular separability of bounded \mathbb{Z}-PN languages

- Unary separability of semilinear sets

[Choffrut, Grigorieff ILP’06]
Solution

1. Deterministic = nondeterministic. ➞ assume DFA
 (Presented before by Sławek Lasota.)

2. Regular partitioning. ✓

3. Reduce to separability of bounded languages. ✓
 (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)
Conclusions

1. [Decidable] 1CN [Czerwiński, Lasota LICS’17] (one \mathbb{N}-counter, with zero test).

 Via the Regular Overapproximation technique
 → next talk by Wojtek Czerwiński.

2. [Decidable] \mathbb{Z}-PN [C., Czerwiński, Lasota, Paperman ICALP’17] (many \mathbb{Z}-counters; no zero test). ✔

3. [Conjecture] Separability of \mathbb{N}-PN languages is decidable.