Regular separability of Parikh automata languages

L. Clemente, W. Czerwiński, S. Lasota (University of Warsaw) Ch. Paperman (University of Bordeaux)

London, September 2017

Regular separability of Parikh automata languages Z-Petri nets

L. Clemente, W. Czerwiński, S. Lasota (University of Warsaw) Ch. Paperman (University of Bordeaux)

London, September 2017

At a glance

1. Problem: Regular separability of \mathbb{Z} -Petri nets languages.

2. Result: The problem is decidable.

3. Future: Decidable for ℕ-Petri nets? Conjecture: YES.

Main techniques

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning.
- 3. Reduce to separability of *bounded languages*. (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)

Regular separability

Regular separability

Regular separability

 1. 1CN [Czerwiński, Lasota LICS'17] (one ℕ-counter, with zero test).

Via the Regular Overapproximation technique

→ next talk by Wojtek Czerwiński.

1. 1CN [Czerwiński, Lasota LICS'17]
 (one ℕ-counter, with zero test).

Via the *Regular Overapproximation* technique → next talk by Wojtek Czerwiński.

2. Z-PN [C., Czerwiński, Lasota, Paperman ICALP'17] (many Z-counters; *no zero test*).

1. 1CN [Czerwiński, Lasota LICS'17] (one ℕ-counter, with zero test).

Via the *Regular Overapproximation* technique → next talk by Wojtek Czerwiński.

- 2. Z-PN [C., Czerwiński, Lasota, Paperman ICALP'17] (many Z-counters; *no zero test*).
- 3. [Conjecture] Separability of \mathbb{N} -PN languages is decidable.

1. 1CN [Czerwiński, Lasota LICS'17] (one ℕ-counter, with zero test).

Via the *Regular Overapproximation* technique → next talk by Wojtek Czerwiński.

- 2. \mathbb{Z} -PN [C., Czerwiński, Lasota, Paperman ICALP'17] (many \mathbb{Z} -counters; *no zero test*).
- 3. [Conjecture] Separability of \mathbb{N} -PN languages is decidable.

Regular separability of Z-PN

What is a \mathbb{Z} -Petri net?

Nondeterministic finite automaton A + finitely many \mathbb{Z} -counters (no zero test).

Accepting runs: counters start and end with value zero.

Regular separability of Z-PN

What is a \mathbb{Z} -Petri net?

Nondeterministic finite automaton A + finitely many \mathbb{Z} -counters (no zero test).

Accepting runs: counters start and end with value zero.

Theorem. Regular separability is decidable for \mathbb{Z} -PN.

Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)

assume DFA

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning.

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning.
- 3. Reduce to separability of *bounded languages*. (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning.
- 3. Reduce to separability of *bounded languages*. (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)

Regular partitioning

A, B separable iff, for every i, $A \cap Ri$, $B \cap Ri$ separable

We can assume the *same underlying DFA* for the two \mathbb{Z} -PNs.

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning. 🗸
- 3. Reduce to separability of bounded languages. (Bounded languages are of the form, e.g., $x^*y^*z^*$ for x, y, $z \in \Sigma^*$.)

Consider simple cycles instead of single transitions:

- Cycles can be rearranged (once enough states have been visited).
- We can fix an order for cycles \rightarrow bounded language.

Lemma. L(A), L(B) are regular separable iff L(A), L(B) are regular separable in x*y*z*

regular separability of $_$ bounded regular separability of $_$ bounded $\boxed{\mathbb{Z}}$ -PN languages

regular separability of $_$ bounded regular separability of bounded \mathbb{Z} -PN languages bounded \mathbb{Z} -PN languages

regular separability of $_$ bounded regular separability of $_$ bounded \Z -PN languages

regular separability of $_$ bounded regular separability of $_$ unary separability of $_$ unary separability of $_$ semilinear sets

[Choffrut, Grigorieff ILP'06]

- Deterministic = nondeterministic.
 (Presented before by Sławek Lasota.)
- 2. Regular partitioning. 🗸
- 3. Reduce to separability of bounded languages. \checkmark (Bounded languages are of the form, e.g., $x^*y^*z^*$ for $x, y, z \in \Sigma^*$.)

Conclusions

1. [Decidable] 1CN [Czerwiński, Lasota LICS'17] (one ℕ-counter, with zero test).

Via the *Regular Overapproximation* technique → next talk by Wojtek Czerwiński.

- 2. [Decidable] Z-PN [C., Czerwiński, Lasota, Paperman ICALP'17] (many Z-counters; *no zero test*). ✓
- 3. [Conjecture] Separability of \mathbb{N} -PN languages is decidable.