Domains for Higher-Order Games

Matthew Hague, Roland Meyer, Sebastian Muskalla
Royal Holloway University of London, and TU Braunschweig

MFCS 2017
Decide the winning region / strategy of inclusion games

- Played over higher-order recursion schemes.
 - (Higher-order control-flow)
- A play generates a program trace.
- The program trace must belong to a regular specification.
Overview – Our Solution

We use

- Concrete semantics of terms t
 - Pointed ω-complete partial order (CPPO)
 - Fixed point semantics via Kleene iteration
 - Infinite formula evaluates to “true” iff Player \circ can win from t

- Abstract-interpretation framework
 - Into a finite CPPO – fixed point computable
 - Fixed-point transfer ensures exact abstraction
 - Gives a decision procedure for determining winner
Background
The verification problem:

Given: Source code of a program P and a specification φ
Question: Does runtime behaviour of P satisfy φ?
The verification problem:

Given: Source code of a program P and a specification φ

Question: Does runtime behaviour of P satisfy φ?

Language-theoretic approach:

$L_P = \text{possible program executions}$

$L_\varphi = \text{valid executions}$

Decide: $L_P \subseteq L_\varphi$
The Good and Bad

$L_P = \text{possible program executions}$

$L_\varphi = \text{valid executions}$
The Good and Bad

\[\mathcal{L}_P = \text{possible program executions} \]
\[\mathcal{L}_\varphi = \text{valid executions} \]

Good: \(\mathcal{L}_\varphi \) usually regular (easy)
Bad: \(\mathcal{L}_P \) usually complicated...
The Good and Bad

\[\mathcal{L}_P = \text{possible program executions} \]
\[\mathcal{L}_\varphi = \text{valid executions} \]

Good: \(\mathcal{L}_\varphi \) usually regular (easy)

Bad: \(\mathcal{L}_P \) usually complicated...

Because of the bad:

- Problem is undecidable
- We need to approximate \(\mathcal{L}_P \)
A program has control-flow and data

\[\mathcal{L}_P = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} \]

We know

- \(\mathcal{L}_{CF} \) may have many manageable representations
 - Regular, context-free, higher-order...
- \(\mathcal{L}_{Data} \) can be arbitrary
 - Best handled using techniques from logic
A program has control-flow and data

$$\mathcal{L}_P = \mathcal{L}_{CF} \cap \mathcal{L}_{Data}$$

We know

- \mathcal{L}_{CF} may have many manageable representations
 - Regular, context-free, higher-order...
- \mathcal{L}_{Data} can be arbitrary
 - Best handled using techniques from logic

How to combine the two?

- CEGAR loop [Podolski et al. since 2010]
CEGAR Loop

Define $\mathcal{L}_S := \mathcal{L}_\varphi$
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_{CF} \subseteq \mathcal{L}_S$?
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_{CF} \subseteq \mathcal{L}_S \ ? \xrightarrow{\text{yes}} \text{return } P \models \varphi$
CEGAR Loop

\[
\text{Init } \mathcal{L}_S := \mathcal{L}_\varphi \\
\mathcal{L}_{CF} \subseteq \mathcal{L}_S ? \xrightarrow{\text{yes}} \text{return } P \models \varphi \\
\text{no } w \in \mathcal{L}_{CF} \setminus \mathcal{L}_S \\
w \in \mathcal{L}_P ?
\]
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_{CF} \subseteq \mathcal{L}_S$?

- yes \Rightarrow return $P \models \varphi$
- no $w \in \mathcal{L}_{CF} \setminus \mathcal{L}_S$

$w \in \mathcal{L}_P$?

- yes \Rightarrow return $P \not\models S$
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_{CF} \subseteq \mathcal{L}_S$?

- yes \rightarrow return $P \models \varphi$
- no $w \in \mathcal{L}_{CF} \setminus \mathcal{L}_S$

$w \leadsto \mathcal{L}_w$, $\mathcal{L}_w \cap \mathcal{L}_P = \emptyset$?

- no $w \in \mathcal{L}_P$
- yes \rightarrow return $P \not\models S$
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_S := \mathcal{L}_S \cup \mathcal{L}_w \quad \rightarrow \quad \mathcal{L}_{CF} \subseteq \mathcal{L}_S \quad ? \quad \overset{yes}{\rightarrow} \quad \text{return } P \models \varphi$

$w \sim \mathcal{L}_w$, $\mathcal{L}_w \cap \mathcal{L}_P = \emptyset$

$\quad \overset{no}{\rightarrow} \quad w \in \mathcal{L}_P \quad ?$

$\quad \overset{no}{\rightarrow} \quad w \in \mathcal{L}_{CF} \setminus \mathcal{L}_S$

$\quad \overset{yes}{\rightarrow} \quad \text{return } P \not\models S$

$\quad \overset{yes}{\rightarrow} \quad \text{return } P \models \varphi$
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_S := \mathcal{L}_S \cup \mathcal{L}_w \rightarrow \mathcal{L}_{CF} \subseteq \mathcal{L}_S$?

- yes \rightarrow return $P \models \varphi$
- no $w \in \mathcal{L}_{CF} \setminus \mathcal{L}_S$

$w \leadsto \mathcal{L}_w, \quad \mathcal{L}_w \cap \mathcal{L}_P = \emptyset$

- no $w \in \mathcal{L}_P$?
 - yes \rightarrow return $P \not\models S$
 - no \rightarrow return $P \not\models S$

Algorithmic challenges:
- Inclusion $\mathcal{L}_{CF} \subseteq \mathcal{L}_S$
- Recursion schemes!
- Membership $w \in \mathcal{L}_P$
- Hoare Logic
- Extrapolation $w \leadsto \mathcal{L}_w$
CEGAR Illustration
CEGAR Illustration
CEGAR Illustration
CEGAR Illustration
Language Synthetic Synthesis
Synthesis

Why write a bad program and check it’s ok?
 - Better to generate a correct program!

The synthesis problem:
 Given: Template of a program P and a specification φ
 Question: Is there an instantiation P' that satisfies φ?
Synthesis

Why write a bad program and check it’s ok?
 o Better to generate a correct program!

The synthesis problem:
 Given: Template of a program P and a specification φ
 Question: Is there an instantiation P' that satisfies φ?

Approach:
 o Language-theoretic synthesis
 o CEGAR loop
Types of Non-determinism

Model the control-flow as a Higher-order Recursion Scheme

Demonic
Program input:
- handle all possibilities.

```python
def F():
    x = read()
    if x == 0:
        G()
    else:
        H()
```

becomes

\[F = rd(x, 0) \land rd(x, 1) H \]

Angelic
Program branch:
- choose best.

```python
def F():
    if ???:
        G()
    else:
        H()
```

becomes

\[F = G \lor H \]
Language-Theoretic Synthesis

Model as a higher-order two player perfect information game
- Player □ – uncontrollable non-determinism
- Player ◦ – controllable non-determinism

Is there a strategy s for ◦ such that

$$L_{G@s} \subseteq L_\varphi$$

I.e. when Player ◦ uses s all generated words are in L_φ
Model as a higher-order two player perfect information game

- Player □ – uncontrollable non-determinism
- Player ○ – controllable non-determinism

Is there a strategy \(s \) for ○ such that

\[
\mathcal{L}_{G@s} \subseteq \mathcal{L}_\varphi
\]

I.e. when Player ○ uses \(s \) all generated words are in \(\mathcal{L}_\varphi \)

Replace the inclusion check

\[
\mathcal{L}_G \subseteq \mathcal{L}_S
\]

with strategy synthesis.
CEGAR Loop

Init $\mathcal{L}_S := \mathcal{L}_\varphi$

$\mathcal{L}_S := \mathcal{L}_\varphi \cup \mathcal{L}_w \rightarrow \exists s. \mathcal{L}_{CF@s} \subseteq \mathcal{L}_S ?$ yes return $P@s \models \varphi$

no $\exists s_{op}. w \in \mathcal{L}_{CF@s_{op}} \setminus \mathcal{L}_S$

$w \leadsto \mathcal{L}_w,$
$\mathcal{L}_w \cap \mathcal{L}_P = \emptyset$

$w \in \mathcal{L}_P ?$

no yes

return

$\forall s. P@s \not\models S$

Algorithmic challenges:
Game $\exists s. \mathcal{L}_{CF@s} \subseteq \mathcal{L}_S$
Membership $w \in \mathcal{L}_P$
Extrapolation $w \leadsto \mathcal{L}_w$
Higher-Order Inclusion Games
Given a

- Higher-Order Recursion Scheme
- Ownership partition of non-terminals
 \[
 S = F G
 \]
 \[
 F f = a (F f) \lor a (f b)
 \]
 \[
 G x = x \land b x
 \]
- Finite automaton \(A \) over terminals (\(\{a, b\} \))

\[
\begin{align*}
 q_0 \quad & \quad \xrightarrow{a} \quad q_0 \\
 q_0 \quad & \quad \xrightarrow{b} \quad q_1 \\
 q_1 \quad & \quad \xrightarrow{a} \quad q_1
\end{align*}
\]
Safety Games

We study safety games:

Can Player avoid generating a word $w \notin \mathcal{L}_A$?
$S_\circ = F_\circ G_\square$

$F_\circ f = a (F_\circ f) \lor a (f b)$

$G_\square x = x \land b x$
Example Play

\[S \circ = F \circ G \square \]
\[F \circ f = a (F \circ f) \lor a (f \ b) \]
\[G \square x = x \land b \ x \]
Example Play

\[S_\circ = F_\circ G_{\square} \]

\[F_\circ f = a (F_\circ f) \lor a (f b) \]

\[G_{\square} x = x \land b x \]
Example Play

\[S_\circ = F_\circ \text{G} \]

\[
\begin{align*}
F_\circ f &= a (F_\circ f) \lor a (f b) \\
G \quad x &= x \wedge b x
\end{align*}
\]
Example Play

\[S_\circ = F_\circ G_\square \]

\[F_\circ f = a (F_\circ f) \lor a (f b) \]

\[G_\square x = x \land b x \]

\[a \]

\[F_\circ \]

\[G_\square \]
$S \circ = F \circ G$

$F \circ f = a (F \circ f) \lor a (f \ b)$

$G x = x \land b \ x$

a

| F \circ | G □ |
Example Play

\[S_\circ = F_\circ G \square \]

\[F_\circ f = a (F_\circ f) \lor a (f b) \]

\[G \square x = x \land b \ x \]

\[a \]

\[G \square \]

\[b \]
Example Play

\[S_\circ = F_\circ G_\Box \]

\[F_\circ f = a (F_\circ f) \lor a (f b) \]

\[G_\Box x = x \land b x \]

\[G_\Box \]

\[b \]
Example Play

\[S_{\circ} = F_{\circ} G_{\square} \]

\[F_{\circ} f = a (F_{\circ} f) \lor a (f b) \]

\[G_{\square} x = x \land b x \]

\[\begin{array}{c}
 a \\
 \downarrow \\
 a \\
 \downarrow \\
 b \\
 \downarrow \\
 b
\end{array} \]
Example Play

\[S \circ = F \circ G \square \]
\[F \circ f = a \ (F \circ f) \lor a \ (f \ b) \]
\[G \square x = x \land b \ x \]
Example Play

\[S_\circ = F_\circ G_\square \]
\[F_\circ f = a (F_\circ f) \lor a (f \ b) \]
\[G_\square x = x \land b \ x \]

Since \(aabb \notin \Sigma^*bb\Sigma^* \) Player \(\circ \) loses this play.
Results

Theorem
Given a higher-order game G and regular specification A, determining the winning of G wrt A is k-EXPTIME-complete for an order-k scheme.

Such a result is already known

- Determinize A
- Product with G
- \Rightarrow standard safety game over higher-order recursion schemes.
 - Solvable by e.g. [Serre]
Our Approach

We provide a new approach

- Develop a concrete semantics $[S]$ of G wrt \mathcal{A}
 - infinite CPPO: monotone boolean formulas and continuous (higher-order) functions between them.
- Give a framework for exact abstract interpretation
- Abstract into an abstract semantics over a finite CPPO
- Compute the abstract semantics by simple Kleene iteration
Related Work

Similar approaches have been studied in the literature.

- Models/domains:
 - Walukiewicz & Salvati
 - Melliès & Grellois
 - Hofmann, Chen & Ledent

- Abstract interpretation:
 - Abramsky & Hankin
 - Ramsay
 - Hofmann, Chen & Ledent
Boolean formula representing game

\[S = a \lor b \]

\[\llbracket S \rrbracket = a \lor b \]

A proposition \(w \) is true iff \(w \notin \mathcal{L}_A \).
Boolean formula representing game

$$S = a \lor b$$

$$\llbracket S \rrbracket = a \lor b$$

A proposition w is true iff $w \notin \mathcal{L}_A$.

Formulas may be infinite:

$$\llbracket S \rrbracket = (w_1 \lor w_2) \land (w_3 \lor w_4 \lor (w_4 \land \cdots$$
Boolean formula representing game

\[S = a \lor b \]
\[\llbracket S \rrbracket = a \lor b \]

A proposition \(w \) is true iff \(w \not\in \mathcal{L}_A \).
Formulas may be infinite:

\[\llbracket S \rrbracket = (w_1 \lor w_2) \land (w_3 \lor w_4 \lor (w_4 \land \cdots \right) \]

The semantics of a function is given as a function

\[F : \tau_1 \rightarrow \tau_2 \]
\[\llbracket F \rrbracket \in D_{\tau_1} \rightarrow D_{\tau_2} \]
Solution Sketch: Fixed Points

We compute the semantics via recursive equations

\[F = \lambda x.a (F \, x) \]

\[
[F] = [\lambda x.a (F \, x)] \\
\quad = \lambda x.[a] \, [F] \, x
\]

The semantics \([F]\) is

- A function
- A fixed point of the above recursive equations

Once we know \([F]\), \([G]\), ..., computing the semantics of a term is easy

\[
[F \, a] = [F][a]
\]
Solution Sketch: Concrete Semantics

Theorem
The following are equivalent
- Player ◦ wins from \(t : o \)
- \([t]\) is true under \(\mathcal{L}_A \)

“True under \(\mathcal{L}_A \)”
- a proposition \(w \) is true iff \(w \notin \mathcal{L}_A \).
Solution Sketch: Abstraction

We can’t compute infinite formulas.

- We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration
Solution Sketch: Abstraction

We can’t compute infinite formulas.
 - We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration

The number of propositions $w \in \Sigma^*$ is infinite
 - We abstract $\alpha(w)$ into a finite domain
 - Therefore only finitely many boolean formulas
 - Fixed point computation terminates
Solution Sketch: Abstraction

We can’t compute infinite formulas.

- We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration

The number of propositions \(w \in \Sigma^* \) is infinite

- We abstract \(\alpha(w) \) into a finite domain
- Therefore only finitely many boolean formulas
 - Fixed point computation terminates
- We show the abstraction is precise
 - This involves defining what precise means
 - Our abstraction is exact not approximate
 - No false positives!
We abstract w by the set of states of A from which w is accepted

$$\alpha(w) = \{ q \mid q \xrightarrow[w]{} q_f \}$$

Here

$$\alpha(aba) = \{q_0, q_1\}$$
Solution Sketch: Correctness

Truth of propositions:

- \(w \text{ true iff } w \notin L_A \)
- \(\alpha(w) \text{ true iff } q_0 \notin \alpha(w) \)

The abstraction is precise:

Theorem

\[\alpha(\text{Concrete semantics}) = \text{Abstract semantics} \]

We can compute in the finite domain!
Solution Sketch: Finishing

Complexity:
- The complexity is k-EXPTIME-complete for an order-k scheme
- We need a second abstraction into an optimised domain

Winning region and strategy
- For any term $[t]$ is computable in “linear time”.
- Winning strategy for Player \circ
 - Always choose moves that stay in the winning region
Conclusion

We have

- Defined and motivated higher-order inclusion games
- Shown k-EXPTIME-completeness
- Given a solution based on semantics in CPPOs
- Used exact abstract interpretation to obtain an effective (and optimised) solution

Future work

- Categories?
- More powerful winning conditions