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Deep neural networks have achieved impressive ex-
perimental results in image classification, matching the
cognitive ability of humans in complex tasks with thou-
sands of classes. Many applications are envisaged, in-
cluding their use as perception modules and end-to-end
controllers for self-driving cars. Let Rn be a vector space
of images (points) that we wish to classify and assume
that f : Rn → C, where C is a (finite) set of class labels,
models the human perception capability, then a neural net-
work classifier is a function f̂ (x) which approximates f (x)
from M training examples {(xi, ci)}i=1,..,M . For example, a
perception module of a self-driving car may input an im-
age from a camera and must correctly classify the type of
object in its view, irrespective of aspects such as the angle
of its vision and image imperfections. Therefore, though
they clearly include imperfections, all four pairs of images
in Figure 1 should arguably be classified as automobiles,
since they appear so to a human eye.

Classifiers employed in vision tasks are typically multi-
layer networks, which propagate the input image through
a series of linear and non-linear operators. They are high-
dimensional, often with millions of dimensions, non-
linear and potentially discontinuous: even a small net-
work, such as that trained to classify hand-written im-
ages of digits 0-9, has over 60,000 real-valued parame-
ters and 21,632 neurons (dimensions) in its first layer. At
the same time, the networks are trained on a finite data
set and expected to generalise to previously unseen im-
ages. To increase the probability of correctly classifying
such an image, regularisation techniques such as dropout
are typically used, which improves the smoothness of the
classifiers, in the sense that images that are close (within
ε distance) to a training point are assigned the same class
label.

Unfortunately, it has been observed that deep neural
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Figure 1: Automobile images (classified correctly) and
their perturbed images (classified wrongly)

networks, including highly trained and smooth networks
optimised for vision tasks, are unstable with respect to so
called adversarial perturbations. Such adversarial pertur-
bations are (minimal) changes to the input image, often
imperceptible to the human eye, that cause the network
to misclassify the image. Examples include not only ar-
tificially generated random perturbations, but also (more
worryingly) modifications of camera images that corre-
spond to resizing, cropping or change in lighting condi-
tions. They can be devised without access to the training
set and are transferable, in the sense that an example mis-
classified by one network is also misclassified by a net-
work with a different architecture, even if it is trained on
different data. Figure 1 gives adversarial perturbations of
automobile images that are misclassified as a bird, frog,
airplane or horse by a highly trained state-of-the-art net-
work. This obviously raises potential safety concerns for
applications such as autonomous driving and calls for au-
tomated verification techniques that can verify the cor-
rectness of their decisions.
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Safety of AI systems is receiving increasing attention
in view of their potential to cause harm in safety-critical
situations such as autonomous driving. Typically, deci-
sion making in such systems is either solely based on
machine learning, through end-to-end controllers, or in-
volves some combination of logic-based reasoning and
machine learning components, where an image classifier
produces a classification, say speed limit or a stop sign,
that serves as input to a controller. A recent trend to-
wards “explainable AI” has led to approaches that learn
not only how to assign the classification labels, but also
additional explanations of the model, which can take the
form of a justification explanation (why this decision has
been reached, for example identifying the features that
supported the decision) In all these cases, the safety of a
decision can be reduced to ensuring the correct behaviour
of a machine learning component. However, safety assur-
ance and verification methodologies for machine learning
are little studied.

The main difficulty with image classification tasks,
which play a critical role in perception modules of au-
tonomous driving controllers, is that they do not have a
formal specification in the usual sense: ideally, the perfor-
mance of a classifier should match the perception ability
and class labels assigned by a human. Traditionally, the
correctness of a neural network classifier is expressed in
terms of risk, defined as the probability of misclassifica-
tion of a given image, weighted with respect to the input
distribution µ of images. Similar (statistical) robustness
properties of deep neural network classifiers, which com-
pute the average minimum distance to a misclassification
and are independent of the data point, have been studied
and can be estimated using tools such as DeepFool and
cleverhans. However, we are interested in the safety of
an individual decision, and to this end focus on the key
property of the classifier being invariant to perturbations
at a given point. This notion is also known as pointwise
robustness or local adversarial robustness.

Contributions. In this paper we propose a general
framework for automated verification of safety of classi-
fication decisions made by feed-forward deep neural net-
works. Although we work concretely with image classi-
fiers, the techniques can be generalised to other settings.
For a given image x (a point in a vector space), we as-
sume that there is a (possibly infinite) region η around
that point that incontrovertibly supports the decision, in

the sense that all points in this region must have the same
class. This region is specified by the user and can be given
as a small diameter, or the set of all points whose salient
features are of the same type. We next assume that there
is a family of operations ∆, which we call manipulations,
that specify modifications to the image under which the
classification decision should remain invariant in the re-
gion η. Such manipulations can represent, for example,
camera imprecisions, change of camera angle, or replace-
ment of a feature. We define a network decision to be safe
for input x and region η with respect to the set of manipu-
lations ∆ if applying the manipulations on x will not result
in a class change for η. We employ discretisation to enable
a finite exhaustive search of the high-dimensional region
η for adversarial misclassifications. The discretisation ap-
proach is justified in the case of image classifiers since
they are typically represented as vectors of discrete pixels
(vectors of 8 bit RGB colours). To achieve scalability, we
propagate the analysis layer by layer, mapping the region
and manipulations to the deeper layers. We show that this
propagation is sound, and is complete under the additional
assumption of minimality of manipulations, which holds
in discretised settings. In contrast to existing approaches,
our framework can guarantee that a misclassification is
found if it exists. Since we reduce verification to a search
for adversarial examples, we can achieve safety verifica-
tion (if no misclassifications are found for all layers) or
falsification (in which case the adversarial examples can
be used to fine-tune the network or shown to a human
tester).

We implement the techniques using Z3 in a tool called
DLV (Deep Learning Verification) and evaluate them on
state-of-the-art networks, including regularised and deep
learning networks. This includes image classification net-
works trained for classifying hand-written images of dig-
its 0-9 (MNIST), 10 classes of small colour images (CI-
FAR10), 43 classes of the German Traffic Sign Recogni-
tion Benchmark (GTSRB) and 1000 classes of colour im-
ages used for the well-known imageNet large-scale visual
recognition challenge (ILSVRC). The perturbed images
in Figure 1 are found automatically using our tool for the
network trained on the CIFAR10 dataset.
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