A Decidable Logic For Transductions with Regular Synthesis

Nathan Lhote1,2
Joint work with Luc Dartois2 and Emmanuel Filiot2

1Université de Bordeaux
2Université Libre de Bruxelles

Transductions are binary relations from finite input to finite output words. We introduce a logic, called L_T, to express properties of transductions. In this logic, the dependency between input and output words is modeled via an origin function which associates with any position of the output word, the input position from which it originates. The logic L_T is expressive enough to define all MSO-definable functions of finite words, as defined by Courcelle, but also some interesting relations that are not definable by MSO-transducers, such as the shuffle, by which one obtains all permutations of a given input word. In this context a specification is given as an L_T formula and the regular synthesis problem amounts to obtaining a functional transducer satisfying the specification. Despite the high expressive power of this logic we show that we can effectively uniformize an L_T definable transduction.