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Linear-time temporal logic (LTL) is one of the most commonly used logics
in model checking, monitoring, and reactive synthesis, and a prime example for
the “unusal effectiveness of logic in computer science”. LTL pioneered the idea
that the correctness of computer programs should not just be specified in terms
of a relation between one-time inputs and outputs, but in terms of the infinite
sequences of such interactions captured by the execution traces of the program.
The fundamental properties of the logic, in particular its ultimately periodic
model property, and the connection to first-order logic via Kamp’s theorem [5],
have been studied extensively and are covered in handbook articles and text-
books.

We revisit these foundations in light of the recent trend to consider not only
the individual traces of a computer program, but properties of sets of traces, so-
called hyperproperties [2]. The motivation for the study of hyperproperties comes
from information flow security. Information flow policies characterize the secrecy
and integrity of a system by relating two or more execution traces, for example
by comparing the observations made by an external observer on traces that
result from different values of a secret variable. Such a comparison can obviously
not be expressed as a property of individual traces, but it can be expressed as a
property of the full set of system traces. Beyond security, hyperproperties also
occur naturally in many other settings, such as the symmetric access to critical
resources in distributed protocols, and Hamming distances between code words
in coding theory.

HyperLTL [1], the extension of LTL to hyperproperties, uses trace quantifiers
and trace variables to refer to multiple traces at the same time. For example, the
formula ∀π. ∀π′. G (aπ ↔ aπ′) expresses that all computation traces must agree
on the value of the atomic proposition a at all times. The extension is useful: it
has been shown that most hyperproperties studied in the literature can be ex-
pressed in HyperLTL. There has also been some success in extending algorithms
for model checking, monitoring, and satisfiability from LTL to HyperLTL. So far,
however, we lack a clear understanding of how deeply the foundations of LTL
are affected by the extension. Of particular interest would be a characterization
of the models of the logic. Are the models of a satisfiable HyperLTL formula still
“simple” in the sense of the ultimately periodic model theorem of LTL?

It turns out that the differences between LTL and HyperLTL are surprisingly
profound. Every satisfiable LTL formula has a model that is a (single) ultimately
periodic trace. Such models are in particular finite and finitely representable. One
might thus conjecture that a satisfiable HyperLTL formula has a model that
consists of a finite set of traces, or an ω-regular set of traces, or at least some set
of ultimately periodic traces. We refute all these conjectures. Some HyperLTL
formulas have only infinite models, some have only non-regular models, and
? Full version appeared at STACS 2017 [3].



some have only aperiodic models. We can even encode the prime numbers in
HyperLTL!

Is there some way, then, to characterize the expressive power of HyperLTL?
For LTL, Kamp’s seminal theorem [5] (in the formulation due to Gabbay et
al. [4]) states that LTL is expressively equivalent to first-order logic FO[<] over
the natural numbers with order. In order to formulate a corresponding “Kamp’s
theorem for HyperLTL,” we have to decide how to encode sets of traces as
relational structures, which also induces the signature of the first-order logic we
consider. We chose to use relational structures that consist of disjoint copies
of the natural numbers with order, one for each trace. To be able to compare
positions on different traces, we add the equal-level predicate E, which relates
the same time points on different traces. The HyperLTL formula from above, for
example, is equivalent to the FO[<, E] formula

∀x. ∀y. E(x, y) → (Pa(x) ↔ Pa(y)).

We show that FO[<, E] is strictly more expressive than HyperLTL, i.e., ev-
ery HyperLTL formula can be translated into an equivalent FO[<, E] formula,
but there exist FO[<, E] formulas that cannot be translated to HyperLTL. In-
tuitively, FO[<, E] can express requirements which relate at some point in time
an unbounded number of traces, which is not possible in HyperLTL. To obtain
a fragment of FO[<, E] that is expressively equivalent to HyperLTL, we must
rule out such properties. We consider the fragment where the quantifiers either
refer to initial positions or are guarded by a constraint that ensures that the
new position is on a trace identified by an initial position chosen earlier. In this
way, a formula can only express properties of the bounded number of traces se-
lected by the quantification of initial positions. We call this fragment HyperFO,
the first-order logic of hyperproperties. Our main result then shows that Hy-
perLTL and HyperFO are indeed expressively equivalent, and thus proves that
Kamp’s correspondence between temporal logic and first-order logic also holds
for hyperproperties.
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