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A fundamental theorem by Skolem [24] establishes that
every first-order sentence without equality is satisfiable if and
only if its functional (Skolem) normal form has a canonical
(Herbrand) model. In this context, the universe of discourse is
the set of ground terms over the vocabulary of the sentence and
the interpretation of the functions is defined in an algebraically
transparent way: each term denotes precisely itself. A break-
through technique by Büchi [9], further refined by Aanderaa [1]
and Börger [5], exploits the structure of Herbrand models of
relational first-order ∃∀∃∀-sentences to prove the undecidability
of the corresponding prefix class. Here, the Herbrand universe
encodes the set of natural numbers with zero and successor.
In that way, the data structure operated by a two-register
machine are implemented transparently. This allows, therefore,
an elementary reduction from the associated halting problem,
which bypasses entirely the cumbersome axiomatization of the
underlying register operations [6]. The transparency of classic
Herbrand interpretations, which underlies their success as a
tool for undecidability proofs, as well as numerous other appli-
cations in mathematical logic and theoretical computer science
(e.g., in completeness theorems [15], semantic tableaux [19],
alternative first-order semantics [16], automated reasoning [10],
logic programming [21], and database theory [2]), comes at
a price: their lack of succinctness. Indeed, as soon as the
vocabulary contains a function symbol, the corresponding
Herbrand universe becomes infinite. This phenomenon severely
limits the effectiveness of Herbrand models in establishing the
decidability of fragments of first-order logic with functions,
not to mention in obtaining tight computational-complexity
bounds or model-theoretic results like the finite-model property.
Aiming at decidability, however, more useful appears a property
of Herbrand models implied by their transparency, rather than
the transparency itself: an equality between terms is satisfiable
on a Herbrand model if and only if its terms are unifiable.
Intuitively, the particular interpretation of terms neutralizes the
expressive power of equalities, by reducing their satisfiability,
at first glance a hard, even infinitary, question, to a polynomial-
time unifiability test. This observation has been exploited by
Kozen to show that the validity problem of positive first-order
logic is in NPTIME [20].

The present work is devoted to the study and application
of the Herbrand property, a novel model-theoretic notion
expressing the fact that the satisfiability of an equation boils
down to the unifiability of its terms. In this terminology, the
aforementioned observation by Kozen can be rephrased as
follows: every Herbrand model enjoys the Herbrand property.
Our work, though, tackles the concept per se, abstracting it
from the specific implementation via Herbrand models, and
investigates its consequences from both a finite model-theoretic
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and a structural-complexity perspective. We obtain non-trivial
results on both levels.

A first part of the work is devoted to the finite model-theoretic
development of the Herbrand property. The main result is a
universal and finitary version of this concept, as follows.

A set of terms is equalizable over all finite structures if
and only if it is unifiable.

Here, a set of terms is said to be equalizable over a structure
if such a structure satisfies all pairwise equalities between
terms of the set. The universal and finitary aspect of our
characterization contrasts with the reduction observed by Kozen
from equalizability over Herbrand models to unifiability, as
we reduce equalizability on all finite structures to unifiability.
An easy corollary of the above result is the existence of finite
models enjoying the Herbrand property, which we call finite
quasi-Herbrand models. This can be seen as an evidence of the
fact that the intrinsic infinitary nature of Herbrand models over
vocabularies with functions is inessential. In other words, the
latter can be seen as a naively verbose implementation of this
fundamental concept. The main consequence of our finitary
version of the Herbrand property is that satisfiable universal
single-binding sentences have finite quasi-Herbrand models,
i.e., more abstractly, the fragment of universal single-binding
logic enjoys the finite (technically, small [25]) model property.

Universal single-binding logic is the language of positive
Boolean combinations of universally quantified binding forms,
where a binding form is, in turn, a Boolean combination of
relational atoms over the same tuple of terms. This logic is
syntactically contained in conjunctive-binding logic introduced
in [22], a fragment of first-order logic that allows positive
Boolean combinations of quantified conjunctions of binding
forms. Since the satisfiability problems for the two logics are
succinctly interreducible via skolemization, we have

Conjunctive-binding logic enjoys the finite model property.

In particular, its (finite) satisfiability problem is decidable,
answering an open question in the literature and completing
the decidability classification of binding fragments of first-
order logic [22]. The result can also be read as a non-trivial
generalization of the decidability proof for Herbrand logic [14],
the language of quantified conjunctions of literals, as it is
syntactically contained in the logic under analysis. On the
other hand, conjunctive-binding logic is orthogonal to all known
decidable fragments (prefix classes [6], two variable [18], [23],
guarded fragments [3], [17], guarded negation [4], et cetera,
see [22] for details) and its solution requires different ideas
and techniques.

The rest of the work focuses on the consequences of the
Herbrand property from the structural complexity viewpoint
with respect to various satisfiability and entailment problems
in conjunctive-binding logic and fragments thereof. Our first
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result is a characterization of the (finite) satisfiability problem
for universal single-binding logic in terms of (finite) quasi-
Herbrand models, placing this problem at the third level of
the polynomial hierarchy. The aforementioned interreducibility
allows then to prove the following statement.

The (finite) satisfiability problem for conjunctive-binding
logic is ΣP

3 -complete.

As opposed to satisfiability, the entailment problem for
conjunctive-binding logic is, unfortunately, undecidable. In-
terestingly enough, the prominent syntactic fragment of quan-
tified conjunctive queries (QCQ) has been shown to have a
decidable (general) entailment problem by Chen, Madelaine,
and Martin [12]. This problem is closely related to QCQ
containment in database theory. In this context, however, the
notion of interest is finite entailment, i.e., entailment on all
finite structures, as in most applications the database is finite.
The question whether entailment and finite entailment in QCQ
coincide, though, was left open in [12]. Our second result
is a tight structural complexity classification of general and
finite entailment in positive Herbrand logic (PH), the logic of
quantified conjunctions of atoms, which syntactically contains
QCQ.

The (finite) entailment problem in positive Herbrand logic
is NPTIME-complete.

Our result has both a complexity-theoretic and a logical
value: on the one hand it closes the previously standing gap
between NPTIME-hardness and 3EXPTIME-membership for
QCQ containment [12]; on the other hand, by exploiting our
finitary Herbrand property, it actually pushes the finite version
of the problem in NPTIME, even for PH. In retrospect, and
not coincidentally, Chen, Madelaine, and Martin obtain their
3EXPTIME upper bound by reasoning on a finite substructure
of an infinite Herbrand model associated with the Skolem
normal form of the implicant sentence in the instance. Our
proof of this theorem, placing the problem in NPTIME, relies
on the observation that positive instances of PH entailment
have short resolution refutations. A careful inspection reveals
that such small witnesses encode certain mappings from the
consequent to the antecedent in the instance. In particular, in
the special case of conjunctive queries (CQ), it is readily seen
that these mappings are precisely homomorphisms. We have
thus recovered the classic theorem by Chandra and Merlin [11],
which places the (finite) containment question for CQ in
NPTIME. Our third and final result, stemmed from this insight,
consists in abstracting a lifted notion of homomorphism from
short refutations of positive QCQ entailment instances. This
notion characterizes the QCQ containment problem.

Given two QCQs φ and ψ, it holds that φ |= ψ if and
only if ψ admits a Skolem homomorphism to φ.

A Skolem homomorphism is a substitution of the variables in
ψ by terms of the skolemization of φ, which is both sensitive
to the dependencies induced by the quantifier prefix of ψ and
faithful to the relational structure associated with φ. Besides,
such an alleged Skolem homomorphism is efficiently checkable
relative to φ and ψ, thus yielding an alternative view on the
NPTIME-membership of the QCQ containment problem. Our
result can be read, therefore, as an accurate lifting of Chandra-
Merlin theorem to the QCQ realm.

Placing the (finite) entailment problem for PH within
NPTIME not just closes the wide complexity-theoretic gap
between the NPTIME-hardness of CQ containment [11] and
the 3EXPTIME-membership of QCQ containment [12], it
actually pushes the problem in the range of practically feasible
computation, e.g., via SAT solvers. Interestingly, resolution-
based first-order provers, once executed on QCQ-containment
instances, implement in essence the behavior dictated by the
proposed extension of the Chandra-Merlin theorem.

We believe that the ideas in this work have the potential for
nontrivial developments. An intriguing problem is the rewriting
of QCQs in order to minimize the number of distinct variables
used in the query, which is the known algorithmic bottleneck
for query evaluation. The issue, fully understood on CQs [7],
[8], [13], is wide open on QCQs. Indeed, the problem is not
even known to be decidable. Perhaps, the notion of Skolem
homomorphism might eventually offer a viable approach.
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