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Abstract

Quantified integer programming is the the problem of deciding assertions of the form Qkxk . . .∀x2 ∃x1 :
A · x ≥ c where vectors of variables xk, . . . , x1 form the vector x, all variables are interpreted over N

(alternatively, over Z), and A and c are a matrix and vector over Z of appropriate sizes. We show in this
paper that quantified integer programming with alternation depth k is complete for the kth level of the
polynomial hierarchy.
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1 Introduction

The problem of integer programming is, given a system of linear inequalities A ·x ≥ b, to decide whether there
exists a solution for x in the non-negative integers. This problem has been studied for decades, and its 0–1
version (in which the components of x are constrained to be either 0 or 1) is one of Karp’s seminal 21 NP-
complete problems [5]. In this paper, we study quantified integer programming (QIP), an extension of integer
programming where some of the variables can be quantified universally—so that its instances have the form

Qkxk . . . ∀x2. ∃x1 : A · x ≥ c (1)

where Qi ∈ {∃,∀} and x consists of all first-order variables appearing in the vectors xi.
Our main contribution is settling the complexity of QIP with k quantifier blocks (as above): we prove this

problem complete for the kth level of the polynomial hierarchy, similarly to the quantified version of SAT.1

We also show that QIP with an unbounded number of quantifier blocks is PSPACE-hard and decidable in
STA(∗, 2nO(1)

, n) ⊆ EXPSPACE.2

Theorem 1. Σk-IP is complete for ΣP
k if k is odd, and Πk-IP is complete for ΠP

k if k is even.

Related work and discussion. While the decidability of QIP is immediate—it can be viewed as a
syntactic fragment of Presburger arithmetic, the (decidable) first-order theory of the natural numbers with
addition and order, in which matrix formulas are constrained to be conjunctions of linear inequalities—its
computational complexity has been unknown. It is, of course, not difficult to see that QIP (and in fact
Presburger arithmetic) is PSPACE-complete if the interpretation of every first-order variable xi is restricted to
an interval [li, ui] that is given as part of the input: xi ∈ [li, ui]; see, e.g., [7]. But if xi ∈ N, then the best

known upper bounds seem to be STA(∗, 22nO(1)

, O(n)) ⊆ 2-EXPSPACE, the generic upper bound for deciding
Presburger arithmetic [1], and the (k− 1)th level of the weak EXP hierarchy for the fragment with k quantifier
blocks [3]. The best known lower bound has been ΠP

2 , established recently by the authors for Π2-instances of
QIP [2, Sec. 4.2].

It may be surprising, and certainly was to the authors, that the complexity of QIP, a natural decision
problem, has not yet been established. The main reason is probably that standard quantifier-elimination and
automata-based techniques—which are at the core of decision procedures for Presburger arithmetic—fail to
yield tight upper bounds for QIP.

1As in the case of quantified CNF SAT, the innermost block of universal quantifiers, if present, is disregarded; e.g., the ∀∗∃∗∀∗
fragment is complete for ΠP

2 . So we find fragments of QIP complete for ΣP
1 = NP, ΠP

2 , ΣP
3 , . . . , but not for coNP = ΠP

1 , ΣP
2 , . . .

2The complexity class STA(s(n), t(n), a(n)) was introduced by Berman [1] and contains all decision problems that can be decided
by an alternating Turing machine in time t(n) using space at most s(n) and alternating at most a(n) times on every computation
branch.
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Our main results are, in short, obtained by means of a new quantifier elimination procedure on hybrid linear
sets, which are semi-linear sets that represent sets of solutions to systems of linear inequalities. While existential
projection (L 7→ {x : ∃y. (x, y) ∈ L}) is a trivial operation on semi-linear sets (in generator representation),
in this paper we define a dual operation, which we call universal projection (L 7→ {x : ∀y. (x, y) ∈ L}), and
show that its application enables us to eliminate blocks of universal quantifiers without resorting to double
complementation (∀ = ¬∃¬; this would lead to a non-elementary blowup).

Concurrently with our work and building upon a theorem of Kannan [4], Nguyen and Pak [6] have shown that
Presburger arithmetic with fixed number of variables and fixed Boolean structure of the matrix formula (and,
by necessity, where the total number of occurrences of atomic predicates is fixed) can be solved in polynomial
time.
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