
Interleaved scope for games and automata

Murdoch J. Gabbay, http://www.gabbay.org.uk

Consider a typical example of binding: λa.(aa). Here λa is a binder and determines a scope for
its binding. Read linearly, the binding has three phases: 1) open the scope; 2) do something in it; 3)
close the scope.
In the λ-calculus (for example) these three phases are combined into a monolithic syntactic

construct λa.(-). But there are instances where scope is best broken down, and its phases made
explicit. Examples include memory allocation and deallocation in C-style languages, opening and
closing files and network sockets, automata with resource allocation (and perhaps deallocation),
and also modelling games in game semantics. It is then natural that scope can be interleaved — for
instance, there is no real-life rule that we have to close files in the reverse order that we opened them.
In the notation given below, the following are legal dynamic sequences:

〈a〈b b〉a〉 and 〈a〈b a〉b〉

We can draw this:

• yy %%•
�� ��

• • and • yy %%• yy %%• •

We want scope to be able to dangle, both into the ‘future’ and into the ‘past’, so we can sensibly talk
about fragments of sequences: so 〈aa and aa〉 are both fully legal syntax, as well as a〈a and a〉a.
Also, matched pairs of brackets should alpha-convert: 〈a〈baa〉b〉 should be suitably equivalent to
〈c〈bcb〉c〉, though not to 〈a〈aaa〉a〉. In previous work we investigated this [GGP15]. We will now
sketch:

(1) a new and hopefully simplified semantics for interleaved scope, and also
(2) a nominal terms style meta-syntax for interleaved scope (that is, a syntax for describing sequences

with interleaved scope that includes variables ranging over sequence-fragments which may include
danging 〈a or a〉).

Thus we give a formal language within which to write axioms about dynamic sequences, and a
semantics for it. This is hard, because we need to account for interleaved and danging scopes. This
is significantly different from the case of the simple, well-nested, monolithic scope familiar from
examples like λa.(-). Nevertheless, our solution below seems pleasingly simple.
Definition 1 (Syntax).(1) Fix a countably infinite set of atoms a, b, c, · · · ∈ A.
(2) A permutation π ∈ Perm is a bijection on atoms. We write id for the identity permutation and

π ◦ π′ for composition of permutations (permutations are traditionally written in prefix notation,
so π ◦ π′ means ‘first π′, then π’).

(3) Fix a countably infinite set of unknowns X,Y, Z, · · · ∈ X (disjoint from atoms). We call a pair
π·X of a permutation and an unknown a moderated unknown; we may abbreviate id·X to X .

(4) Fix two symbols P called past and F called future.
P and F will behave very much like a pair of unknowns, but formally we keep them separate so
that P, F 6∈ X.

(5) A dynamic sequence-fragmentD is a finite sequence of elements from π·X , a, c, 〈a , or a〉, where
a ∈ A and X ∈ X and π ∈ Perm . We may write ε for the empty dynamic sequence-fragment.

(6) A dynamic sequence is a triple s = π′·P Dπ·F where π′ and π are permutations.
(7) A freshness is a set of pairs of the form: a#X for a ∈ A and X ∈ X, or a#P , or a#F .
(8) A freshness context is a set of freshnesses.
Notation 2. We may write the dynamic sequence

π′·P Dπ·F as π′«D»π.

http://www.gabbay.org.uk
http://www.gabbay.org.uk


2

(denotx) JxKς(p, f) = (p, x::f) x ∈ A
(denotbra) J〈aKς(p, f) = (p, [a]f)
(denotket) Ja〉Kς(p, f) = ([a]p, f)
(denotX) Jπ·XKς(p, f) = (p, (π·ς(X)) ◦ f)
(denot seq) JDEKς(p, f) = JDKς(JEKς(p, f))
(denot ε) JεKς(p, f) = (p, f)
(denotD) Jπ′«D»πKς(p, f) = JDKς(π′·p, π·f)

Fig. 1: Denotation

If π′ or π is the identity, then we may omit it, thus writing D for id«D»id.
Definition 3 (Permutation action). Define a permutation action π·s such that π acts on atoms in s
and π·(π′·X) = (π ◦ π′)·X and similarly for π′·P and π′·F . Thus:

π·
(
id« a 〈a X b〉»π-1) = π«π(a) 〈π(a) π·X π(b)〉»id.

Definition 4 (Composition). Suppose s1 = π′
1«D1 »π1 and s2 = π′

2«D2 »π2 are two dynamic
sequences. Define their composition s1 ◦ s2 by

s1 ◦ s2 = (π′
2 ◦ π′

1)« (π′
2·D1) ◦ (π1·D2)»(π1 ◦ π2).

Definition 5.(1) A sequence (of atoms) is a sequence of atoms l = (l0, l1, l2, . . . ). Write L for the
set of sequences of atoms.

(2) A sequence with binding is an α-equivalence class [l′]l = [(l′, l)]α where the atoms in l′ are
distinct and are considered to be bound in l.1
Write S for the set of sequences with binding.

(3) Given S = [l′]l ∈ S and a 6∈ l′ write [a]S for [a :: l′]l. Intuitively this is the sequence obtained by
binding a in [l′]l.

Definition 6. A valuation ς is a map from unknowns X to elements ς(X) ∈ S.
Define a denotation

JDKς : S2 → S2 and JsKς : S2 → S2

of dynamic sequence-fragments and dynamic sequences by the rules in Figure 1.
Remark 7. Rule (denot seq) can be rewritten as JDEKς = JDKς ◦ JEKς , where ◦ denotes function
composition.
Lemma 8. The denotation of Figure 1 is compositional in the sense of Definition 4. In symbols:

JDD′Kς = JDKς ◦ JD′Kς ,

or equivalently: JDD′Kς(p, f) = JDKς(JD′Kς(p, f)).

Proof. By a routine induction on D′ using (denot seq) and Remark 7.

Definition 9. Call a relationR on dynamic sequences compositionalwhen s1 R s′1 implies s1◦s2 R
s′1 ◦ s2 and s2 ◦ s1 R s2 ◦ s′1.
Definition 10. Define alpha-equivalence on dynamic sequences to be the least compositional
relation satisfying the rules in Figure 2.2

1We can define =α on L× L formally as follows: (l′, l) =α (m′,m) when there exists some n′ with n′#l′, l,m′,m such
that (n′ l′)·l = (m′ l′)·m, where n′#l′, l,m′,m means that the atoms in n′ are disjoint from those of l′, l, m′, and m, and
(n′ l′) is the permutation swapping the ith element of n′ with the ith element of l′.
2Actually this is not quite true: composition is also subject to freshness constraints given by the freshness context. Developing
this is beyond the scope of this brief abstract; but see [UPG04].



3

(alphaR) b#F ` 〈a = 〈b »(b a)
(alphaL) b#P ` a〉 =α (b a)« b〉
(permX) ∆ ` π·X =α π

′·X ∀a∈A.(π(a) 6= π′(a)⇒ a#X ∈ ∆)
(permP) ∆ ` π« ε»id =α π

′« ε»id ∀a∈A.(π(a) 6= π′(a)⇒ a#P ∈ ∆)
(permF) ∆ ` id« ε»π =α id« ε»π′ ∀a∈A.(π(a) 6= π′(a)⇒ a#F ∈ ∆)

Fig. 2: alpha-equivalence

Remark 11. Definition 10 and the syntax underlying it is clearly based on nominal terms [UPG04].
The conditions on (permX), (permP), and (permF) are a little long to write out but are actually
very simple: if the differences between π and π′ are fresh for (not free in) X , P , or F respectively,
then the action of π will be equal to the action of π′. We have co-opted the structure of nominal
unknowns to represent past and future, via P and F .
Definition 12.(1) If S = [l′]l ∈ S then write a#S when a 6∈ l\l′ (abusing sets notation for lists); in

words, a is fresh for S when a does not occur free in S.
(2) Write ς � ∆ when a#ς(X) for every a#X ∈ ∆.
(3) If p, f ∈ S then write ς, p, f � ∆ when ς � ∆, and futhermore a#p for every a#P ∈ ∆ and a#f

for every a#F ∈ ∆.
Theorem 13 (Soundness). If ς, p, f � ∆ and ∆ ` s =α t then [[s]]ς = [[t]]ς .

Proof. We consider just the case of (alphaR). Suppose b#f . Then

J〈aKς(p, f) = (p, [a]f) and J〈b »(b a)Kς(p, f) = (p, [b](b a)·f).

Because b#f , it is a fact of alpha-equivalence in S that [b](b a)·f = [a]f .

Example 14. In [GGP15, Definition 6] alpha-equivalence was expressed using a non-local rule that
involved judgements having to do with balancing brackets. Essentially, alpha-equivalence in that
paper contained a PDA to calculate balanced brackets.
Rules (alphaR) and (alphaL) in Figure 2 work together to model the same alpha-equivalence,

but these rules are local and no judgement is required in the meta-language aside from nominal terms
style freshness a#X .

Also, Definition 1 is an explicit nominal terms style syntax with unknowns; so for instance we can
now think about unification, rewriting, and even enriching with explicit quantifiers overX to obtain a
first-order logic for reasoning on dynamic sequences.
Example 15. We illustrate our syntax by formally specifying a pair of scope-extrusion rules as a
nominal algebra specification. Below, ν is some constant symbol, which we can easily add to syntax:

b#X ` b〉X = X b〉 and b#X ` X ν〈b = ν〈b X
There is plenty more to do: examples; a fuller treatment of alpha-equivalence; a sound theory of

substitution of terms for unknowns; full theories of unification, rewriting and algebra; completeness;
applications, including to linked linear structures (of which there are many); generalisations to
non-linear stuctures, logics based on the term syntax and semantics; and so forth.

REFERENCES
[GGP15] Murdoch J. Gabbay, Dan R. Ghica, and Daniela Petrisan, Leaving the Nest: Nominal Tech-

niques for Variables with Interleaving Scopes, 24th EACSL Annual Conference on Com-
puter Science Logic (CSL 2015) (Dagstuhl, Germany) (Stephan Kreutzer, ed.), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 41, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 374–389.

[UPG04] Christian Urban, AndrewM. Pitts, andMurdoch J. Gabbay, Nominal Unification, Theoretical
Computer Science 323 (2004), no. 1–3, 473–497.


