Window parity games: an alternative approach toward parity games with time bounds

Véronique Bruyère¹ Quentin Hautem¹ Mickael Randour²

¹University of Mons, ²Université libre de Bruxelles

<u>U</u>MONS

September 8th, 2016.

Highlights 2016

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

- 2 Parity objective
- 3 Parity-Response
- 4 Window parity
- 5 Conclusion

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

system/player 1 () vs. the environment/player 2 ()

Strategies: function that maps histories to vertex.

Objective of player 1: set of plays.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

system/player 1 () vs. the environment/player 2 ()

Strategies: function that maps histories to vertex.

• Objective of player 1: set of plays.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

system/player 1 () vs. the environment/player 2 ()

Strategies: function that maps histories to vertex.

Objective of player 1: set of plays.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

system/player 1 () vs. the environment/player 2 ()

Strategies: function that maps histories to vertex.

• Objective of player 1: set of plays.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Two-player game:

system/player 1 () vs. the environment/player 2 ()

Strategies: function that maps histories to vertex.

Objective of player 1: set of plays.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Questions

Given a game structure G, an objective Ω and an initial vertex v_0 ,

- Does one player have a winning strategy from the initial vertex ?
- If yes, can we decide which one ?
- What is the complexity class of the decision problem ?
- How much memory is needed for winning strategies ?

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

2 Parity objective

3 Parity-Response

4 Window parity

5 Conclusion

Games on graphs □□	Parity objective	Parity-Response	Window parity	Conclusion

Objectives

Let p: V → {0,..., k} be a priority function.
Parity objective : minimum priority seen infinitely often is even.

Player 1 has a memoryless winning strategy to ensure the Parity objective.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Known results [Jur98]

- The decision problem is in $UP \cap coUP$.
- Memoryless strategies are sufficient for both players.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Known results [Jur98]

- The decision problem is in $UP \cap coUP$.
- Memoryless strategies are sufficient for both players.

Open question : Is there a polynomial time algorithm to solve these games $\ensuremath{?}$

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Known results [Jur98]

- The decision problem is in $UP \cap coUP$.
- Memoryless strategies are sufficient for both players.

Open question : Is there a polynomial time algorithm to solve these games ?

Parity objective deals with limit behavior.

 \rightsquigarrow No explicit bound.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

2 Parity objective

3 Parity-Response

4 Window parity

5 Conclusion

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• Parity-response $(PR(\lambda, p))$:

Idea: every odd priority has to be followed by a smaller even priority in $\lambda-1$ steps.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Objectives based on Parity-Response

- Fixed (Fix) objective : bound λ is given as a parameter.
- Bounded (Bnd) objective : looking for the existence of such a bound.
- Under approximations of parity objective

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Player 1 is winning for FixPR(3, p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Results

	complexity	\mathcal{P}_1 mem.	\mathcal{P}_1 mem.
¹ Fixed PR	PSPACE-c.	exponential	\leq exponential
² Bounded PR	P-easy.	memoryless	infinite

¹[WZ16] : A. Weinert and M. Zimmermann. Easy to win, hard to master: Optimal strategies in parity games with costs.

 $^2 \mbox{[CHH09]: K. Chatterjee, T. Henzinger, and F. Horn. Finitary winning in omega-regular games.$

Quentin Hautem UMONS

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

- 2 Parity objective
- 3 Parity-Response
- 4 Window parity

5 Conclusion

Games on graphs □□	Parity objective	Parity-Response	Window parity ■□	Conclusion □□

Same idea as done for Window Mean-Payoff objective [CDRR15]!

Games on graphs □□	Parity objective	Parity-Response	Window parity ■□	Conclusion

Same idea as done for Window Mean-Payoff objective [CDRR15]!

Games on graphs □□	Parity objective	Parity-Response	Window parity ■□	Conclusion □□

Same idea as done for Window Mean-Payoff objective [CDRR15]!

Idea: min of priorities has to be even before the end of the window.

Games on graphs □□	Parity objective	Parity-Response	Window parity □□	Conclusion □□

Same idea as done for Window Mean-Payoff objective [CDRR15]!

Idea: min of priorities has to be even before the end of the window.

Again, we consider Fixed and Bounded objectives .

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• $\rho \notin \text{FixWP}(\lambda = 3, p)$.

FixWP(
$$\lambda$$
, p) and BndWP(p) \Rightarrow Parity(p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• $\rho \notin \text{FixWP}(\lambda = 3, p)$.

FixWP(
$$\lambda$$
, p) and BndWP(p) \Rightarrow Parity(p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• $\rho \notin \text{FixWP}(\lambda = 3, p)$.

FixWP(
$$\lambda$$
, p) and BndWP(p) \Rightarrow Parity(p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• $\rho \notin \text{FixWP}(\lambda = 3, p)$.

FixWP(
$$\lambda$$
, p) and BndWP(p) \Rightarrow Parity(p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

• $\rho \notin \text{FixWP}(\lambda = 3, p)$.

FixWP(
$$\lambda$$
, p) and BndWP(p) \Rightarrow Parity(p)

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

(Some) results

- Bounded WP and Bounded PR coincide.
- Fixed WP games can be solved in polynomial time Idea: Keep track of the current minimum priority. If it is even, slide the window, otherwise go to next vertex if the end of the window is not reached.
- Fixed PR can be under and over approximated by Fixed WP.

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

- 2 Parity objective
- 3 Parity-Response
- 4 Window parity

5 Conclusion

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

	one-dimension			
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	
Fixed WP	P-c.	polynomial		
Fixed PR	PSPACE-c.	exponential	\leq exponential	
Bounded WP	Pc	momonuloss	infinito	
Bounded PR	рани на	memoryless	mmmte	

	multi-dimension				
	complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.				
Fixed WP	ovponential				
Fixed PR		exponential			
Bounded WP		ovponential	infinito		
Bounded PR		ехроненца	mmne		

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Paper available on ArXiV: https://arxiv.org/pdf/1606.01831.pdf

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Paper available on ArXiV: https://arxiv.org/pdf/1606.01831.pdf

Thank you!

Games on graphs	Parity objective	Parity-Response	Window parity	Conclusion

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows. *Inf. Comput.*, 242:25–52, 2015.

K. Chatterjee, T.A. Henzinger, and F. Horn.

Finitary winning in omega-regular games. ACM Trans. Comput. Log., 11(1), 2009.

Marcin Jurdzinski.

Deciding the winner in parity games is in UP n co-up. Inf. Process. Lett., 68(3):119–124, 1998.

Alexander Weinert and Martin Zimmermann.

Easy to win, hard to master: Optimal strategies in parity games with costs. *CoRR*, abs/1604.05543, 2016.