Decidability border for Petri nets with data: WQO Dichotomy Conjecture

Sławomir Lasota University of Warsaw

Highlights of Logic, Games and Automata, Brussels, 2016.09.08

Sławomir Lasota University of Warsaw

Highlights of Logic, Games and Automata, Brussels, 2016.09.08

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Configurations = $M(P \times A)$, for P the set of places.

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N},=)$

[Lazic,Newcomb,Ouaknine, Roscoe,Worrell'08]

Configurations = $M(P \times A)$, for P the set of places.

In other words, a configuration is a finite induced structure of A, labeled by elements of M(P).

standard decision problems

• termination: are all runs finite?

- termination: are all runs finite?
- place non-emptiness: does some reachable configuration put a token on a given place?

- termination: are all runs finite?
- place non-emptiness: does some reachable configuration put a token on a given place?

defined like classically

- termination: are all runs finite?
- place non-emptiness: does some reachable configuration put a token on a given place?
- boundedness: is the set of reachable configurations finite, up to data automorphism?

defined like classically

standard decision problems

input: a Petri net with data and an initial configuration

- termination: are all runs finite?
- place non-emptiness: does some reachable configuration put a token on a given place?
- boundedness: is the set of reachable configurations finite, up to data automorphism?
- coverability: does some reachable configuration cover a given configuration, up to data automorphism?

defined like classically

defined up to automorphism

For which data domains \mathbb{A} the standard problems are decidable?

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

For which data domains \mathbb{A} the standard problems are decidable?

restrict to homogeneous ones

For which data domains \mathbb{A} the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

glueing two structures along a common part

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

glueing two structures along a common part

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

glueing two structures along a common part

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

> glueing two structures along a common part

restrict to homogeneous ones

For which data domains A the standard problems are decidable?

A relational structure A is homogeneous if its finite induced substructures admit amalgamation.

glueing two structures along a common part

homogeneous data domains

homogeneous structure A	amalgamation class
equality data (\mathbb{N} , =)	finite pure sets
total order data (Q, <)	finite total orders
- dense-time data (ℚ, <, +1)	
discrete-time data (ℤ, <, +1)	
universal (random) graph	finite graphs
universal equivalence relation	finite equivalence relations
universal partial order	finite partial orders
universal directed graph	finite directed graphs
universal tournament	finite tournaments
•••	•••

Recall that a configuration is

Recall that a configuration is a finite induced substructure of A labeled by elements of M(P).

Recall that a configuration is a finite induced substructure of A labeled by elements of M(P).

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO.

Recall that a configuration is a finite induced substructure of A labeled by elements of M(P).

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO.

Recall that a configuration is a finite induced substructure of A labeled by elements of M(P).

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO. Then all standard problems are decidable.

Recall that a configuration is a finite induced substructure of A labeled by elements of M(P).

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO. Then all standard problems are decidable.

Proof:

Using the framework of WSTS of [Finkel, Schnoebelen'01].

Undecidability proof driven by an infinite anti-chain.

• universal directed graph:

- universal directed graph:
 - counter value represented by a cycle

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

• universal partial order:

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

• universal partial order:

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

• universal partial order:

• universal tournament:

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

• universal partial order:

• universal tournament:

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?

• universal partial order:

• universal tournament:

. . .

For an effective homogeneous data domain \mathbb{A} , exactly one of the following conditions holds:

For an effective homogeneous data domain \mathbb{A} , exactly one of the following conditions holds:

• \mathbb{A} is a WQO;

For an effective homogeneous data domain \mathbb{A} , exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.

For an effective homogeneous data domain \mathbb{A} , exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.

Likewise for other data-enriched models, for instance emptiness of alternating automata with 1-register.

For an effective homogeneous data domain \mathbb{A} , exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.

Likewise for other data-enriched models, for instance emptiness of alternating automata with 1-register.

