Decidability border for Petri nets with data: WQO Dichotomy Conjecture

Sławomir Lasota
University of Warsaw

Highlights of Logic, Games and Automata, Brussels, 2016.09.08
WQO Dichotomy Conjecture

Sławomir Lasota
University of Warsaw

Highlights of Logic, Games and Automata,
Brussels, 2016.09.08
Petri nets with data
Petri nets with data

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.
Petri nets with data

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.
Petri nets with data

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N}, =)$

[Lazic, Newcomb, Ouaknine, Roscoe, Worrell’08]
Petri nets with data

Fix a countably infinite relational structure \mathcal{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

- data domain $(\mathbb{N}, =)$

[Latic, Newcomb, Ouaknine, Roscoe, Worrell’08]
Petri nets with data

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

• data domain $(\mathbb{N}, =)$

 [Lazic, Newcomb, Ouaknine, Roscoe, Worrell’08]

• data domain $(\mathbb{Q}, <, +1)$
Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

- data domain $(\mathbb{N}, =)$

 [Lazic, Newcomb, Ouaknine, Roscoe, Worrell’08]

- data domain $(\mathbb{Q}, <, +1)$
Petri nets with data

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

- data domain $(\mathbb{N}, =)$

 [Lazic, Newcomb, Ouaknine, Roscoe, Worrell’08]

- data domain $(\mathbb{Q}, <, +1)$

Configurations $= M(P \times A)$, for P the set of places.
Petri nets with data

Fix a countably infinite relational structure A over a finite vocabulary, and call it data domain.

Data domain is a parameter in the following.

- data domain $(\mathbb{N}, =)$

 [Lazic, Newcomb, Ouaknine, Roscoe, Worrell’08]

- data domain $(\mathbb{Q}, <, +1)$

Configurations $= M(P \times A)$, for P the set of places.

In other words, a configuration is a finite induced structure of A, labeled by elements of $M(P)$.
standard decision problems
standard decision problems

input: a Petri net with data
and an initial configuration
standard decision problems

input: a Petri net with data and an initial configuration

• **termination**: are all runs finite?
standard decision problems

input: a Petri net with data and an initial configuration

- termination: are all runs finite?

- place non-emptiness: does some reachable configuration put a token on a given place?
standard decision problems

- **termination**: are all runs finite?
- **place non-emptiness**: does some reachable configuration put a token on a given place?

Input: a Petri net with data and an initial configuration

Defined like classically
standard decision problems

input: a Petri net with data and an initial configuration

• **termination**: are all runs finite?

• **place non-emptiness**: does some reachable configuration put a token on a given place?

• **boundedness**: is the set of reachable configurations finite, up to data automorphism?
standard decision problems

input: a Petri net with data and an initial configuration

• **termination**: are all runs finite?

• **place non-emptiness**: does some reachable configuration put a token on a given place?

• **boundedness**: is the set of reachable configurations finite, up to data automorphism?

• **coverability**: does some reachable configuration cover a given configuration, up to data automorphism?

} defined like classically

} defined up to automorphism
For which data domains A the standard problems are decidable?
For which data domains A the standard problems are decidable?
For which data domains \mathbb{A} the standard problems are decidable?

restrict to **homogeneous** ones

Petri nets, where sets of places and transitions are infinite but orbit-finite (definable) [Bojańczyk, Klin, L.’14]
For which data domains \mathcal{A} the standard problems are decidable?

A relational structure \mathcal{A} is **homogeneous** if its finite induced substructures admit amalgamation.
For which data domains \mathcal{A} the standard problems are decidable?

A relational structure \mathcal{A} is **homogeneous** if its finite induced substructures admit amalgamation.

restrict to **homogeneous** ones

glueing two structures along a **common part**
For which data domains \mathcal{A} the standard problems are decidable?

A relational structure \mathcal{A} is \textit{homogeneous} if its finite induced substructures admit amalgamation.

- data domain $(\mathbb{Q}, <, +1)$
For which data domains \(A \) the standard problems are decidable?

A relational structure \(A \) is **homogeneous** if its finite induced substructures admit amalgamation.

- data domain \((\mathbb{Q}, <, +1) \)

\[
\begin{array}{cccc}
\bullet & +1 & \bullet & +1 \\
\bullet & +1 & \bullet & +1 & +1 & \bullet
\end{array}
\]
For which data domains A the standard problems are decidable?

A relational structure A is **homogeneous** if its finite induced substructures admit amalgamation.

- **data domain** $(\mathbb{Q}, <, +1)$
For which data domains \mathbb{A} the standard problems are decidable?

A relational structure \mathbb{A} is \textbf{homogeneous} if its finite induced substructures admit amalgamation.

- data domain $(\mathbb{Q}, <, +1)$

\textbullet\quad \text{restrict to \textbf{homogeneous} ones}

\textbullet\quad \text{glueing two structures along a \textit{common part}}
For which data domains \mathcal{A} the standard problems are decidable?

A relational structure \mathcal{A} is **homogeneous** if its finite induced substructures admit amalgamation.

- data domain $(\mathbb{Q}, <, +1)$

\[+1 \bullet +1 \bullet +1 \]

\[+1 \bullet +1 \bullet +1 \bullet +1 \]
Homogeneous Data Domains

<table>
<thead>
<tr>
<th>Homogeneous Structure A</th>
<th>Amalgamation Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>equality data ((\mathbb{N}, =))</td>
<td>finite pure sets</td>
</tr>
<tr>
<td>total order data ((\mathbb{Q}, <))</td>
<td>finite total orders</td>
</tr>
<tr>
<td>dense-time data ((\mathbb{Q}, <, +1))</td>
<td></td>
</tr>
<tr>
<td>discrete-time data ((\mathbb{Z}, <, +1))</td>
<td></td>
</tr>
<tr>
<td>universal (random) graph</td>
<td>finite graphs</td>
</tr>
<tr>
<td>universal equivalence relation</td>
<td>finite equivalence relations</td>
</tr>
<tr>
<td>universal partial order</td>
<td>finite partial orders</td>
</tr>
<tr>
<td>universal directed graph</td>
<td>finite directed graphs</td>
</tr>
<tr>
<td>universal tournament</td>
<td>finite tournaments</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
decidability (uninteresting)
Recall that a configuration is
Recall that a configuration is a finite induced substructure of A labeled by elements of $M(P)$.
Recall that a configuration is a finite induced substructure of A labeled by elements of $M(P)$.

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO.
Recall that a configuration is a finite induced substructure of A labeled by elements of $M(P)$.

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO. $\{A \text{ is a WQO}\}$
Recall that a configuration is a finite induced substructure of A labeled by elements of $M(P)$.

Theorem:

Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO. Then all standard problems are decidable.
Recall that a configuration is a finite induced substructure of A labeled by elements of $M(P)$.

Theorem:
Let A be an effective homogeneous data domain such that configurations, ordered by embeddings, are a WQO. Then all standard problems are decidable.

Proof:
Using the framework of WSTS of [Finkel, Schnoebelen’01].
undecidability (interesting)
Undecidability proof driven by an infinite anti-chain.
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
Undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test ?
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

• universal directed graph:
 • counter value represented by a cycle
 • zero test ?
Undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test?

- universal partial order:
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

• universal directed graph:
 • counter value represented by a cycle
 • zero test ?

• universal partial order:
Undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

• universal directed graph:
 • counter value represented by a cycle
 • zero test ?

• universal partial order:

• universal tournament:
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test?

- universal partial order:

- universal tournament:
undecidability (interesting)

Undecidability proof driven by an infinite anti-chain.

- universal directed graph:
 - counter value represented by a cycle
 - zero test?

- universal partial order:

- universal tournament:

- ...
WQO Dichotomy Conjecture:
WQO Dichotomy Conjecture:

For an effective homogeneous data domain A, exactly one of the following conditions holds:
WQO Dichotomy Conjecture:

For an effective homogeneous data domain A, exactly one of the following conditions holds:

- A is a WQO;
WQO Dichotomy Conjecture:

For an effective homogeneous data domain A, exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.
WQO Dichotomy Conjecture:

For an effective homogeneous data domain A, exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.

Likewise for other data-enriched models, for instance emptiness of alternating automata with 1-register.
WQO Dichotomy Conjecture:

For an effective homogeneous data domain A, exactly one of the following conditions holds:

- A is a WQO;
- all the standard problems are undecidable.

Likewise for other data-enriched models, for instance emptiness of alternating automata with 1-register.

thank you!