Preservation and Decomposition Theorems for Bounded Degree Structures

Frederik Harwath Lucas Heimberg Nicole Schweikardt

Goethe-University Frankfurt am Main

Highlights 2014, Paris
Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Non-elementary complexity even on finite unranked forests

On input of $\varphi \in \text{FO}$, compute an equivalent

- Gaifman normal form (Dawar, Grohe, Kreutzer, Schweikardt 2007)
- Feferman-Vaught decomposition
- existential FO-sentence* (if φ is preserved under extensions)
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of $\varphi \in \text{FO}$, compute an equivalent

- Gaifman normal form $(H., Kuske, Schweikardt 2013)$
- Feferman-Vaught decomposition $(Harwath, H., Schweikardt 2014)$
- existential FO-sentence*

* if φ is preserved under extensions
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of $\varphi \in \text{FO}$, compute an equivalent

- Gaifman normal form
 \[(H., \text{Kuske, Schweikardt 2013})\]
- Feferman-Vaught decomposition
 \[(\text{Harwath, H., Schweikardt 2014})\]
- existential FO-sentence*
 \[*\text{if } \varphi \text{ is preserved under extensions}\]

Lower bounds: 3-fold exponential.
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of $\varphi \in \text{FO}$, compute an equivalent

- Feferman-Vaught decomposition \[(\text{Harwath, H., Schweikardt 2014})\]
- existential FO-sentence* \[\text{"} \]

*if φ is preserved under extensions

Lower bounds: 3-fold exponential.

Recall: $\text{FO+MOD}_m := \text{FO} + \text{modulo } m$ counting quantifiers

$$\exists \equiv_p \mod m y \ \psi(\bar{x}, y)$$
for all remainders $p \in [0, m-1]$
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of $\varphi \in \text{FO}+\text{MOD}_m$, compute an equivalent

- Feferman-Vaught decomposition

 "(Harwath, H., Schweikardt 2014)"

- existential FO-sentence*

 "* if φ is preserved under extensions"

Lower bounds: 3-fold exponential.

Recall: \[\text{FO}+\text{MOD}_m := \text{FO} + \text{modulo } m \text{ counting quantifiers} \]

\[\exists \equiv p \mod m y \psi(\bar{x}, y) \quad \text{for all remainders } p \in [0, m-1] \]
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of \(\varphi \in \text{FO}+\text{MOD}_m \), compute an equivalent

- Feferman-Vaught decomposition \((\text{Harwath, H., Schweikardt 2014}) \)

Lower bounds: 3-fold exponential.

Recall: \(\text{FO}+\text{MOD}_m := \text{FO} + \text{modulo } m \) counting quantifiers

\[\exists \equiv p \text{mod} m y \; \psi(\vec{x}, y) \quad \text{for all remainders } p \in [0, m-1] \]
Introduction

Aim:
Study complexity of computational problems for FO (+ extensions) on restricted classes of structures.

Elementary algorithms on classes of structures of bounded degree

On input of $\varphi \in \text{FO+MOD}_m$, compute an equivalent

- Feferman-Vaught decomposition \hspace{1cm} \text{(Harwath, H., Schweikardt 2014)}
- Modulo normal form \hspace{1cm} \text{(new!)}

Lower bounds: 3-fold exponential.

Recall: \hspace{1cm} \text{FO+MOD}_m := \text{FO} + \text{modulo } m \text{ counting quantifiers}

$$\exists \equiv p \mod m y \ \psi(x, y)$$ \hspace{1cm} \text{for all remainders } p \in [0, m-1]
We fix a finite relational signature σ.

Classes of structures of bounded degree

For each $d \geq 0$ $C_d := \{ \sigma$-structure $A : \text{maximum degree of } G(A) \leq d \}$
We fix a finite relational signature σ.

Recall:

Gaifman graph of a σ-structure A

$$G(A) := (A, E)$$

such that for all $a, b \in A$ there is an edge between a and b

\iff ex. $R \in \sigma$ and $\overline{t} \in R^A$ with $a, b \in \overline{t}$.
We fix a **finite relational signature** σ.

Recall:

Gaifman graph of a σ-structure A

$$G(A) := (A, E)$$

such that for all $a, b \in A$ there is an edge between a and b

\iff ex. $R \in \sigma$ and $\bar{t} \in R^A$ with $a, b \in \bar{t}$.

Classes of structures of bounded degree

For each $d \geq 0$

$$C^d := \{ \sigma\text{-structure } A : \text{maximum degree of } G(A) \leq d \}$$
We fix a finite relational signature σ.

Recall:
Gaifman graph of a σ-structure \mathcal{A}

$$G(\mathcal{A}) := (A, E)$$

such that for all $a, b \in A$ there is an edge between a and b if and only if there exists $R \in \sigma$ and $t \in R^A$ with $a, b \in t$.

Classes of structures of bounded degree

For each $d \geq 0$

$$\mathcal{C}_d := \{\sigma\text{-structure } \mathcal{A} : \text{maximum degree of } G(\mathcal{A}) \leq d\}$$
Feferman-Vaught decompositions

Determine the theory of a composed structure by the theories of its component structures.
Feferman-Vaught decompositions

Determine the theory of a composed structure by the theories of its component structures.

Compositions:
Disjoint unions, cartesian products . . .
Feferman-Vaught decompositions

Determine the theory of a composed structure by the theories of its component structures.

Compositions:
Disjoint unions, cartesian products . . .

Applications:
▶ decidability results
▶ model- and satisfiability checking
▶ ingredient in other proofs (e.g., Gaifman’s theorem)
Feferman-Vaught decompositions

Determine the theory of a composed structure by the theories of its component structures.

Compositions:
Disjoint unions, cartesian products . . .

Applications:
- decidability results
- model- and satisfiability checking
- ingredient in other proofs (e.g., Gaifman’s theorem)

Algorithmic:
Decompose formula into Boolean combination of formulas that speak about component structures.
Feferman-Vaught decompositions

Determine the theory of a composed structure by the theories of its component structures.

Compositions:
Disjoint unions, cartesian products . . .

Applications:
- decidability results
- model- and satisfiability checking
- ingredient in other proofs (e.g., Gaifman’s theorem)

Algorithmic:
Decompose formula into Boolean combination of formulas that speak about component structures.
Feferman-Vaught decompositions

Assume: \(\sigma \) has unary relation symbols \(\text{RED, BLUE,} \ldots \)
Feferman-Vaught decompositions

Assume: σ has unary relation symbols $\text{RED}, \text{BLUE}, \ldots$

- σ-structure \mathcal{A} is disjunctly colored \iff
 $\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots$ is a partition of A and
 all nodes adjacent in $G(\mathcal{A})$ have same color.
Feferman-Vaught decompositions

Assume: \(\sigma \) has unary relation symbols \(\text{RED}, \text{BLUE}, \ldots \)

- \(\sigma \)-structure \(\mathcal{A} \) is disjointly colored: \(\iff \)
 - \(\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots \) is a partition of \(A \) and
 - all nodes adjacent in \(G(\mathcal{A}) \) have same color.
Assume: \(\sigma \) has unary relation symbols \(\text{RED}, \text{BLUE}, \ldots \)

- \(\sigma \)-structure \(\mathcal{A} \) is disjunctly colored \(\iff \)

 \(\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots \) is a partition of \(A \) and

 all nodes adjacent in \(G(\mathcal{A}) \) have same color.
Feferman-Vaught decompositions

Assume: σ has unary relation symbols RED, BLUE, ...

- σ-structure \mathcal{A} is **disjointly colored**: \iff

 $\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots$ is a partition of A and all nodes adjacent in $G(\mathcal{A})$ have same color.

- $\varphi \in \text{FO+MOD}_m$ is **monochrome**: \iff

 ex. $K \in \{\text{RED, BLUE, ...}\}$ such that for all disjointly colored \mathcal{A},

 $\mathcal{A} \models \varphi \iff \mathcal{A}|_{K^\mathcal{A}} \models \varphi$
Feferman-Vaught decompositions

Assume: σ has unary relation symbols $\text{RED}, \text{BLUE}, \ldots$

- σ-structure \mathcal{A} is disjointly colored \iff

 $\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots$ is a partition of A and all nodes adjacent in $G(\mathcal{A})$ have same color.

- $\varphi(\bar{x}) \in \text{FO} + \text{MOD}_m$ is monochrome \iff

 ex. $K \in \{\text{RED}, \text{BLUE}, \ldots\}$ such that for all disjointly colored \mathcal{A},

 $$\mathcal{A} \models \varphi[\bar{a}] \iff (\mathcal{A}|_K \models \varphi[\bar{a}] \text{ and } \bar{a} \subseteq K^\mathcal{A})$$
Feferman-Vaught decompositions

Assume: \(\sigma \) has unary relation symbols \(\text{RED}, \text{BLUE}, \ldots \)

- \(\sigma \)-structure \(\mathcal{A} \) is **disjointly colored**: \(\iff \)

 \(\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots \) is a partition of \(A \) and all nodes adjacent in \(G(\mathcal{A}) \) have same color.

- \(\varphi(\overline{x}) \in \text{FO}+\text{MOD}_m \) is **monochrome**: \(\iff \)

 ex. \(K \in \{ \text{RED}, \text{BLUE}, \ldots \} \) such that for all disjointly colored \(\mathcal{A} \),

 \[\mathcal{A} \models \varphi[\overline{a}] \iff (\mathcal{A}_{|K^\mathcal{A}} \models \varphi[\overline{a}] \text{ and } \overline{a} \subseteq K^\mathcal{A}) \]

Theorem *(Harwath, H., Schweikardt 2014)*

For each \(\varphi(\overline{x}) \in \text{FO} \), a Feferman-Vaught decomposition, i.e., a Boolean combination of monochrome FO-formulas which is equivalent to \(\varphi(\overline{x}) \) on all disjointly colored \(\mathcal{A} \in \mathcal{C}_d \) can be computed in time \(3\text{-exp}(\|\varphi\|) \).
Feferman-Vaught decompositions

Assume: \(\sigma \) has unary relation symbols \(\text{RED}, \text{BLUE}, \ldots \)

- \(\sigma \)-structure \(\mathcal{A} \) is **disjointly colored**: \(\iff \)
 \(\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots \) is a partition of \(A \) and
 all nodes adjacent in \(G(\mathcal{A}) \) have same color.

- \(\varphi(\overline{x}) \in \text{FO}+\text{MOD}_m \) is **monochrome**: \(\iff \)
 ex. \(K \in \{ \text{RED}, \text{BLUE}, \ldots \} \) such that for all disjointly colored \(\mathcal{A}, \)
 \(\mathcal{A} \models \varphi[\overline{a}] \iff (\mathcal{A}|_{K^\mathcal{A}} \models \varphi[\overline{a}] \text{ and } \overline{a} \subseteq K^\mathcal{A}) \)

Theorem *(Harwath, H., Schweikardt 2014)*

For each \(\varphi(\overline{x}) \in \text{FO} \), a Feferman-Vaught decomposition,
i.e., a Boolean combination of monochrome FO-formulas
which is equivalent to \(\varphi(\overline{x}) \) on all disjointly colored \(\mathcal{A} \in \mathcal{C}_d \)
can be computed in time \(3\text{-exp}(\|\varphi\|) \).

This is optimal.
Feferman-Vaught decompositions

Assume: \(\sigma \) has unary relation symbols \(\text{RED}, \text{BLUE}, \ldots \)

- \(\sigma \)-structure \(\mathcal{A} \) is disjointly colored : \(\iff \)
 \(\text{RED}^\mathcal{A}, \text{BLUE}^\mathcal{A}, \ldots \) is a partition of \(A \) and
 all nodes adjacent in \(G(\mathcal{A}) \) have same color.

- \(\varphi(\overline{x}) \in \text{FO+MOD}_m \) is monochrome : \(\iff \)
 ex. \(K \in \{ \text{RED}, \text{BLUE}, \ldots \} \) such that for all disjointly colored \(\mathcal{A}, \)
 \[\mathcal{A} \models \varphi[\overline{a}] \iff (\mathcal{A}_{|K} \models \varphi[\overline{a}] \text{ and } \overline{a} \subseteq K^\mathcal{A}) \]

Theorem \(\text{(new!)} \)

For each \(\varphi(\overline{x}) \in \text{FO+MOD}_m \), a Feferman-Vaught decomposition, i.e., a Boolean combination of monochrome \(\text{FO+MOD}_m \)-formulas
which is equivalent to \(\varphi(\overline{x}) \) on all disjointly colored \(\mathcal{A} \in \mathcal{C}_d \)
can be computed in time \(4\text{-exp}(\|\varphi\|) \).
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $c \in \mathcal{A}$.

- r-neighbourhood $N^\mathcal{A}_r(c) := \{ b \in \mathcal{A} : dist^\mathcal{A}(b, c) \leq r \}$
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $c \in A$.

- r-neighbourhood $N^\mathcal{A}_r(c) := \{ b \in A : \text{dist}^\mathcal{A}(b, c) \leq r \}$
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $c \in A$.

- r-neighbourhood $N_r^\mathcal{A}(c) := \{ b \in A : \text{dist}^\mathcal{A}(b, c) \leq r \}$
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $c \in A$.

- r-neighbourhood $N^\mathcal{A}_r(c) := \{ b \in A : \text{dist}^\mathcal{A}(b, c) \leq r \}$
- r-type $\mathcal{N}^\mathcal{A}_r(c) := (\mathcal{A}|_{N^\mathcal{A}_r(c)}, c)$
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $c \in A$.

- r-neighbourhood $N_r^\mathcal{A}(c) := \{ b \in A : \text{dist}^\mathcal{A}(b, c) \leq r \}$

- r-type $\mathcal{N}_r^\mathcal{A}(c) := (\mathcal{A}|_{N_r^\mathcal{A}(c)}, c)$

- c realises r-type $\tau : \iff \mathcal{N}_r^\mathcal{A}(c) \cong \tau$
Proof Sketch: Preliminaries

Let \mathcal{A} be a σ-structure and $\bar{c} \in A^n$.

- r-neighbourhood $N_r^A(\bar{c}) := \{ b \in A : \text{dist}^A(b, \bar{c}) \leq r \}$

- r-type $N_r^A(\bar{c}) := (\mathcal{A}|_{N_r^A(\bar{c})}, \bar{c})$

- \bar{c} realises r-type $\tau : \iff N_r^A(\bar{c}) \cong \tau$
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is c_d-equivalent to $\varphi(\overline{x})$
Proof Sketch for FO

Problem

- **Input**: FO-formula \(\varphi(x) \)
- **Output**: Boolean combination of monochrome FO-formulas that is \(\mathcal{C}_d \)-equivalent to \(\varphi(x) \)

Step 1: Construct \(\mathcal{C}_d \)-equivalent Hanf normal form \(\psi(x) \) for \(\varphi(x) \)
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is \mathcal{C}_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct \mathcal{C}_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Hanf-formula:

$$\exists \geq k y \text{sph}_\tau(\overline{x}, y)$$

where $\mathcal{A} \models \text{sph}_\tau[\overline{a}, b] \iff \mathcal{N}^\mathcal{A}_r(\overline{a}, b) \cong \tau.$
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is \mathcal{C}_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct \mathcal{C}_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Hanf-formula:

$$\exists \geq^k y \ \text{sph}_\tau(\overline{x}, y)$$

where $\mathcal{A} \models \text{sph}_\tau[\overline{a}, b] \iff \mathcal{N}_r^\mathcal{A}(\overline{a}, b) \cong \tau.$

Theorem

(Bollig, Kuske 2012)

For each $\varphi(\overline{x}) \in \text{FO}$, a \mathcal{C}_d-equivalent Hanf normal form, i.e., a Boolean combination of Hanf-formulas, can be computed in time $3\text{-exp}(\|\varphi\|)$.

Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is C_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct C_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Hanf-formula:

$$\exists \geq k y \ sph_\tau(\overline{x}, y)$$

where $A \models sph_\tau[\overline{a}, b] \iff N^A_r(\overline{a}, b) \cong \tau$.

Theorem (Bollig, Kuske 2012)

For each $\varphi(\overline{x}) \in FO$, a C_d-equivalent Hanf normal form, i.e., a Boolean combination of Hanf-formulas, can be computed in time $3\text{-exp}(\|\varphi\|)$. This is optimal.
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is c_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct c_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(x)$
Output: Boolean combination of monochrome FO-formulas that is \mathcal{C}_d-equivalent to $\varphi(x)$

Step 1: Construct \mathcal{C}_d-equivalent Hanf normal form $\psi(x)$ for $\varphi(x)$

Case 1: τ is not disjointly colored

Step 2: Decompose each Hanf-formula $\alpha(x) := \exists^\geq k y \ sph_\tau(x, y)$ in $\psi(x)$
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(x)$
Output: Boolean combination of monochrome FO-formulas that is c_d-equivalent to $\varphi(x)$

Step 1: Construct c_d-equivalent Hanf normal form $\psi(x)$ for $\varphi(x)$

Step 2: Decompose each Hanf-formula $\alpha(x) := \exists y \geq k \text{sph}_{\tau}(x, y)$ in $\psi(x)$

Case 1: τ is not disjointly colored
Proof Sketch for FO

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: FO-formula $\varphi(x)$</td>
</tr>
<tr>
<td>Output: Boolean combination of monochrome FO-formulas that is \mathcal{C}_d-equivalent to $\varphi(x)$</td>
</tr>
</tbody>
</table>

Step 1: Construct \mathcal{C}_d-equivalent Hanf normal form $\psi(x)$ for $\varphi(x)$

Step 2: Decompose each Hanf-formula $\alpha(x) := \exists^{\geq k} y \ sph_\tau(x, y)$ in $\psi(x)$

Case 1: τ is not disjointly colored

$\rightarrow \alpha$ is unsatisfiable in disjointly colored structures
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(x)$

Output: Boolean combination of monochrome FO-formulas that is C_d-equivalent to $\varphi(x)$

Step 1: Construct C_d-equivalent Hanf normal form $\psi(x)$ for $\varphi(x)$

Step 2: Decompose each Hanf-formula $\alpha(x) := \exists^{\geq k} y \ sph_\tau(x, y)$ in $\psi(x)$

Case 1: τ is not disjointly colored

$\longrightarrow \alpha$ is unsatisfiable in disjointly colored structures
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is \mathcal{C}_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct \mathcal{C}_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Step 2: Decompose each Hanf-formula $\alpha(\overline{x}) := \exists^{\geq k} y \ sph_\tau(\overline{x}, y)$ in $\psi(\overline{x})$

Case 1: τ is not disjointly colored

$\rightarrow \alpha$ is unsatisfiable in disjointly colored structures

Case 2: τ is disjointly colored

\begin{center}
\begin{tikzpicture}
 \fill[red] (0,0) circle (1cm);
 \fill[blue] (2,0) circle (1cm);
\end{tikzpicture}
\end{center}
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(x)$
Output: Boolean combination of monochrome FO-formulas that is c_d-equivalent to $\varphi(x)$

Step 1: Construct c_d-equivalent Hanf normal form $\psi(x)$ for $\varphi(x)$

Step 2: Decompose each Hanf-formula $\alpha(x) := \exists y \geq k \text{sph}_{\tau}(x, y)$ in $\psi(x)$

Case 1: τ is not disjointly colored

$\longrightarrow \alpha$ is unsatisfiable in disjointly colored structures

Case 2: τ is disjointly colored

$\longrightarrow \text{Replace } \alpha \text{ by conjunction of monochrome Hanf-formulas}$
Proof Sketch for FO

Problem

Input: FO-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO-formulas that is c_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct c_d-equivalent Hanf normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Step 2: Decompose each Hanf-formula $\alpha(\overline{x}) := \exists \geq^k y \ sph_{\tau}(\overline{x}, y)$ in $\psi(\overline{x})$

Case 1: τ is not disjointly colored

$\rightarrow \alpha$ is unsatisfiable in disjointly colored structures

Case 2: τ is disjointly colored

\rightarrow Replace α by conjunction of monochrome Hanf-formulas
Proof Sketch for FO+MOD_m

Problem

Input: FO+MOD_m-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO+MOD_m-formulas that is c_d-equivalent to $\varphi(\overline{x})$
Proof Sketch for FO+MOD$_m$

Problem

Input: FO+MOD$_m$-formula $\varphi(x)$

Output: Boolean combination of monochrome FO+MOD$_m$-formulas that is \mathcal{C}_d-equivalent to $\varphi(x)$

Step 1: Construct \mathcal{C}_d-equivalent **Modulo normal form** $\psi(x)$ for $\varphi(x)$
Proof Sketch for FO+MOD$_m$

Problem

Input: FO+MOD$_m$-formula $\varphi(\overline{x})$

Output: Boolean combination of monochrome FO+MOD$_m$-formulas that is \mathcal{C}_d-equivalent to $\varphi(\overline{x})$

Step 1: Construct \mathcal{C}_d-equivalent Modulo normal form $\psi(\overline{x})$ for $\varphi(\overline{x})$

Modulo-formula:

$$\exists \equiv^p \text{mod} m y \ \text{sph}_\tau(\overline{x}, y)$$

where $\mathcal{A} \models \text{sph}_\tau[\overline{a}, b] \iff \mathcal{N}_r\mathcal{A}(\overline{a}, b) \cong \tau$.
Proof Sketch for FO+MOD\textsubscript{m}

Problem

Input: FO+MOD\textsubscript{m}-formula \(\varphi(\overline{x}) \)

Output: Boolean combination of monochrome FO+MOD\textsubscript{m}-formulas that is \(\mathcal{C}_d \)-equivalent to \(\varphi(\overline{x}) \)

Step 1: Construct \(\mathcal{C}_d \)-equivalent Modulo normal form \(\psi(\overline{x}) \) for \(\varphi(\overline{x}) \)

Modulo-formula:

\[
\exists \equiv^{p \mod m} y \ sph_{\tau}(\overline{x}, y)
\]

where \(A \models sph_{\tau}[\overline{a}, b] \iff N_{r}^{A}(\overline{a}, b) \cong \tau. \)

Theorem \textit{(new!)}

For each \(\varphi(\overline{x}) \in FO+MOD_{m} \), a \(\mathcal{C}_d \)-equivalent Modulo normal form, i.e., a Boolean combination of Hanf-formulas and Modulo-formulas, can be computed in time \(4\text{-exp}(\|\varphi\|) \).
Proof Sketch for FO+MOD\(_m\)

Problem

Input: FO+MOD\(_m\)-formula \(\varphi(\bar{x})\)

Output: Boolean combination of monochrome FO+MOD\(_m\)-formulas that is \(\mathcal{C}_d\)-equivalent to \(\varphi(\bar{x})\)

Step 1: Construct \(\mathcal{C}_d\)-equivalent Modulo normal form \(\psi(\bar{x})\) for \(\varphi(\bar{x})\)

Modulo-formula:
\[
\exists y \equiv \exists p \mod m y \text{ sph}_\tau(\bar{x}, y)
\]

where \(\mathcal{A} \models \text{sph}_\tau[\bar{a}, b] \iff \mathcal{N}_r^\mathcal{A}(\bar{a}, b) \simeq \tau\).

Theorem (new!)

For each \(\varphi(\bar{x}) \in \text{FO+MOD}_m\), a \(\mathcal{C}_d\)-equivalent Modulo normal form, i.e., a Boolean combination of Hanf-formulas and Modulo-formulas, can be computed in time \(4\text{-exp}(\|\varphi\|)\).
Proof Sketch for FO+MOD$_m$

Problem

Input: FO+MOD$_m$-formula $\varphi(\bar{x})$

Output: Boolean combination of monochrome FO+MOD$_m$-formulas that is c_d-equivalent to $\varphi(\bar{x})$

Step 1: Construct c_d-equivalent Modulo normal form $\psi(\bar{x})$ for $\varphi(\bar{x})$ ✓

Step 2: Decompose each Modulo- or Hanf-formula in $\psi(\bar{x})$
Proof Sketch for FO+MOD\textsubscript{m}

Problem

- **Input:** FO+MOD\textsubscript{m}-formula \(\varphi(\overline{x}) \)
- **Output:** Boolean combination of monochrome FO+MOD\textsubscript{m}-formulas that is \(c_d \)-equivalent to \(\varphi(\overline{x}) \)

Step 1: Construct \(c_d \)-equivalent Modulo normal form \(\psi(\overline{x}) \) for \(\varphi(\overline{x}) \) ✔

Step 2: Decompose each Modulo- or Hanf-formula in \(\psi(\overline{x}) \) ✔

\[\ldots \text{suitable adaptation of Step 2 for FO} \]
Main Results

Upper Bounds

There are algorithms that, on input of \(\varphi \in FO \), compute in time a

<table>
<thead>
<tr>
<th>3-exp(|\varphi|)</th>
<th>Hanf normal form</th>
<th>(Bollig, Kuske 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-exp(|\varphi|)</td>
<td>Feferman-Vaught decomposition</td>
<td></td>
</tr>
</tbody>
</table>

that is equivalent to \(\varphi \) on \(\mathcal{C}_d \).
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO}$, compute in

<table>
<thead>
<tr>
<th>time</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-exp($|\varphi|$)</td>
<td>Hanf normal form</td>
</tr>
<tr>
<td>3-exp($|\varphi|$)</td>
<td>Feferman-Vaught decomposition</td>
</tr>
<tr>
<td>5-exp($|\varphi|$)</td>
<td>existential FO-sentence*</td>
</tr>
<tr>
<td>4-exp($|\varphi|$)</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

* if φ is preserved under extensions/homomorphisms on \mathcal{C}_d

that is equivalent to φ on \mathcal{C}_d.
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO}$, compute in time a

<table>
<thead>
<tr>
<th>time</th>
<th>3-exp($|\varphi|$)</th>
<th>3-exp($|\varphi|$)</th>
<th>5-exp($|\varphi|$)</th>
<th>4-exp($|\varphi|$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>Hanf normal form</td>
<td>Feferman-Vaught decomposition</td>
<td>existential FO-sentence*</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

that is equivalent to φ on \mathcal{C}_d.

(Bollig, Kuske 2012)

Lower bounds

3-fold exponential for FO.
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO (FO+MOD}_m\text{)},$ compute in time a

<table>
<thead>
<tr>
<th>Time</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(4)^{-\text{exp}(|\varphi|)}$</td>
<td>Hanf (Modulo) normal form (Bollig, Kuske 2012)</td>
</tr>
<tr>
<td>$3(4)^{-\text{exp}(|\varphi|)}$</td>
<td>Feferman-Vaught decomposition</td>
</tr>
<tr>
<td>$5(6)^{-\text{exp}(|\varphi|)}$</td>
<td>existential FO-sentence*</td>
</tr>
<tr>
<td>$4(4)^{-\text{exp}(|\varphi|)}$</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

* if φ is preserved under extensions/homomorphisms on \mathcal{C}_d that is equivalent to φ on \mathcal{C}_d.

Lower bounds

3-fold exponential for FO.
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO (FO+MOD}_m)$, compute in time

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(4)$-$\exp(|\varphi|)$</td>
<td>Hanf (Modulo) normal form $(\text{Bollig, Kuske 2012})$</td>
</tr>
<tr>
<td>$3(4)$-$\exp(|\varphi|)$</td>
<td>Feferman-Vaught decomposition</td>
</tr>
<tr>
<td>$5(6)$-$\exp(|\varphi|)$</td>
<td>existential FO-sentence*</td>
</tr>
<tr>
<td>$4(4)$-$\exp(|\varphi|)$</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

* if φ is preserved under extensions/homomorphisms on \mathcal{C}

that is equivalent to φ on $\mathcal{C} \subseteq \mathcal{C}_d$,
which is closed under disjoint unions and induced substructures.

Lower bounds

3-fold exponential for FO.
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO} (\text{FO+MOD}_m)$, compute in time $a^{3(4)^{\text{exp}(\|\varphi\|)}}$ Hanf (Modulo) normal form \((Bollig, Kuske 2012)\)

<table>
<thead>
<tr>
<th>Time</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(4)^{\text{exp}(|\varphi|)}$</td>
<td>Hanf (Modulo) normal form</td>
</tr>
<tr>
<td>$3(4)^{\text{exp}(|\varphi|)}$</td>
<td>Feferman-Vaught decomposition</td>
</tr>
<tr>
<td>$5(6)^{\text{exp}(|\varphi|)}$</td>
<td>existential FO-sentence*</td>
</tr>
<tr>
<td>$4(4)^{\text{exp}(|\varphi|)}$</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

* if φ is preserved under extensions/homomorphisms on \mathfrak{C}

that is equivalent to φ on $\mathfrak{C} \subseteq \mathfrak{C}_d$,

which is closed under disjoint unions and induced substructures.

Lower bounds

3-fold exponential for FO.

Ongoing work:

Close the gaps between upper and lower bounds.
Main Results

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO (FO+MOD}_m)$, compute in time a

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3(3)$-exp($|\varphi|$)</td>
<td>Hanf (Modulo) normal form (Bollig, Kuske 2012)</td>
</tr>
<tr>
<td>$3(3)$-exp($|\varphi|$)</td>
<td>Feferman-Vaught decomposition</td>
</tr>
<tr>
<td>$5(6)$-exp($|\varphi|$)</td>
<td>existential FO-sentence*</td>
</tr>
<tr>
<td>$4(4)$-exp($|\varphi|$)</td>
<td>existential-positive FO-sentence*</td>
</tr>
</tbody>
</table>

* if φ is preserved under extensions/homomorphisms on \mathcal{C}

that is equivalent to φ on $\mathcal{C} \subseteq \mathcal{C}_d$, which is closed under disjoint unions and induced substructures.

Lower bounds

3-fold exponential for FO.

Ongoing work: Close the gaps between upper and lower bounds.
Thank you!

Upper Bounds

There are algorithms that, on input of $\varphi \in \text{FO (FO+MOD}_m)$, compute in time $a^{|\varphi|}$

| $3(3)$-exp($|\varphi|$) | Hanf (Modulo) normal form $(Bollig, Kuske 2012)$ |
|-------------------------|---|
| $3(3)$-exp($|\varphi|$) | Feferman-Vaught decomposition |
| $5(6)$-exp($|\varphi|$) | existential FO-sentence* |
| $4(4)$-exp($|\varphi|$) | existential-positive FO-sentence* |

* if φ is preserved under extensions/homomorphisms on \mathcal{C}

that is equivalent to φ on $\mathcal{C} \subseteq \mathcal{C}_d$,

which is closed under disjoint unions and induced substructures.

Lower bounds

3-fold exponential for FO.

Ongoing work: Close the gaps between upper and lower bounds.