Decidability of Weak Logics with Deterministic Transitive Closure

Witold Charatonik\(^1\) Emanuel Kieroński\(^1\) Filip Mazowiecki\(^2\)

\(^1\)University of Wrocław
\(^2\)University of Warsaw

September 5, 2014
Basic facts about FO and FO2

- FO undecidable (Church, Turing; 1930s)
- FO3 undecidable (Kahr, Moore, Wang; 1959)
Basic facts about FO and FO2

- FO undecidable (Church, Turing; 1930s)
- FO3 undecidable (Kahr, Moore, Wang; 1959)
- FO2 decidable
Basic facts about FO and FO²

- FO undecidable (Church, Turing; 1930s)
- FO³ undecidable (Kahr, Moore, Wang; 1959)
- FO² decidable
- FO² exponential model property (Grädel, Kolaitis, Vardi; 1997), NExpTime-completeness

Decidability of Weak Logics with Deterministic Transitive Closure

Highlights 2014

September 5, 2014
Basic facts about FO and FO²

- FO undecidable (Church, Turing; 1930s)
- FO³ undecidable (Kahr, Moore, Wang; 1959)
- FO² decidable
- FO² exponential model property (Grädel, Kolaitis, Vardi; 1997), NExpTime-completeness
- FO² on trees is ExpSpace-complete (Benaim et al.; 2013).
Equivalence closure (EC)

- In general undecidable.
- EC of 1 or 2 binary relations – decidable (Kieroński et al.; 2012)
Equivalence closure (EC)

- In general undecidable.
- EC of 1 or 2 binary relations – decidable (Kieroński et al.; 2012)

Transitive closure (TC)

- In general undecidable.
- TC of 1 binary relation – ?
Equivalence closure (EC)

- In general undecidable.
- EC of 1 or 2 binary relations – decidable (Kieroński et al.; 2012)

Transitive closure (TC)

- In general undecidable.
- TC of 1 binary relation – ?
 partial results [Kieroński, Michaliszyn; 2012]; [Szwast, Tendera; 2013]
$E' \subseteq E$ such that $(a, b), (a, c) \in E \implies b = c$
$E' \subseteq E$ such that $(a, b), (a, c) \in E \implies b = c$

$\text{DTC}(E) = \overline{E} = \text{TC}(E')$
$E' \subseteq E$ such that $(a, b), (a, c) \in E \implies b = c$

$\text{DTC}(E) = \overline{E} = \text{TC}(E')$
$E' \subseteq E$ such that $(a, b), (a, c) \in E \implies b = c$

$\text{DTC}(E) = \overline{E} = \text{TC}(E')$

E'-relation
$E' \subseteq E$ such that $(a, b), (a, c) \in E \implies b = c$

$\text{DTC}(E) = \overline{E} = \text{TC}(E')$

\overline{E}-relation
Examples

- partial function $\forall xy (E(x, y) \rightarrow \overline{E}(x, y))$
Examples

- partial function $\forall xy(E(x, y) \rightarrow \overline{E}(x, y))$

- rooted tree
 - $\exists x(R(x) \land \forall y(R(y) \rightarrow x = y) \land \forall y \neg E(x, y))$ (unique root)
 - $\forall xy(R(x) \land \neg R(y) \rightarrow \overline{E}(y, x))$ (unique path to the root)

$E = \uparrow$, $\overline{E} = \uparrow^+$
Examples

- partial function $\forall xy (E(x, y) \rightarrow \overline{E}(x, y))$
- rooted tree
 - $\exists x (R(x) \land \forall y (R(y) \rightarrow x = y) \land \forall y \neg E(x, y))$ (unique root)
 - $\forall xy (R(x) \land \neg R(y) \rightarrow \overline{E}(y, x))$ (unique path to the root)

$(E = \uparrow, \overline{E} = \uparrow^+)$

- infinite structure $\forall x (\neg \overline{E}(x, x) \land \exists y \overline{E}(x, y))$
On ordered structures $\text{FO} + \text{DTC}$ captures LogSpace (Immerman; 1987);
About DTC

- On ordered structures \(\text{FO} + \text{DTC} \) captures \(\text{LOGSPACE} \) (Immerman; 1987);
- \(\text{FO}^2 + \text{DTC} \) is undecidable (Grädel, Otto, Rosen; 1999);
About DTC

- On ordered structures $\text{FO} + \text{DTC}$ captures LOGSPACE (Immerman; 1987);
- $\text{FO}^2 + \text{DTC}$ is undecidable (Grädel, Otto, Rosen; 1999);
- $\exists^* \forall^* + \text{DTC}^+(E)$ is NEXPSPACE-complete (Immerman et al.; 2004);
• On ordered structures $\mathit{FO} + \mathit{DTC}$ captures LogSpace (Immerman; 1987);
• $\mathit{FO}^2 + \mathit{DTC}$ is undecidable (Grädel, Otto, Rosen; 1999);
• $\exists^* \forall^* + \mathit{DTC}^+ (E)$ is NExpTime-complete (Immerman et al.; 2004); Allowing DTC^- leads to undecidability.
Our logic

$FO^2 + DTC(E)$

- unary predicates: p, q, r, \ldots
- 1 binary relation: E
- its Deterministic Transitive Closure: \bar{E}
- only two variables: x, y.
Our logic

$\text{FO}^2 + \text{DTC}(E)$

- unary predicates: p, q, r, \ldots;
- 1 binary relation: E;
- its Deterministic Transitive Closure: \overline{E};
- only two variables: x, y.

Comparing to $\exists^* \forall^* + \text{DTC}^+(E)$:
Our logic

$\text{FO}^2 + \text{DTC}(E)$

- unary predicates: p, q, r, \ldots;
- 1 binary relation: E;
- its Deterministic Transitive Closure: \overline{E};
- only two variables: x, y.

Comparing to $\exists^* \forall^* + \text{DTC}^+(E)$:

- only two variables 😊
Our logic

$\text{FO}^2 + \text{DTC}(E)$

- unary predicates: p, q, r, \ldots;
- 1 binary relation: E;
- its Deterministic Transitive Closure: \overline{E};
- only two variables: x, y.

Comparing to $\exists^* \forall^* + \text{DTC}^+(E)$:

- only two variables 😊
- negative occurrences of DTC 😊
Our logic

\[\text{FO}^2 + \text{DTC}(E) \]

- unary predicates: \(p, q, r, \ldots \);
- 1 binary relation: \(E \);
- its Deterministic Transitive Closure: \(\overline{E} \);
- only two variables: \(x, y \).

Comparing to \(\exists^* \forall^* + \text{DTC}^+(E) \):

- only two variables
- negative occurrences of DTC
- unrestricted nested quantification
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.

Remember?

$\text{FO}^2 + \text{DTC}$ is undecidable (Grädel, Otto, Rosen; 1999);
$E \cap \text{DTC}(E)$ is \rightarrow, nondeterministic edges are \longrightarrow.

A typical model

Decidability of Weak Logics with Deterministic Transitive Closure

Highlights 2014

September 5, 2014 9 / 11
A typical model

\[E \cap \text{DTC}(E) \] is \(\rightarrow \), nondeterministic edges are \(\longrightarrow \).

Cyclically rooted (blue)
A typical model

$E \cap \text{DTC}(E)$ is \rightarrow, nondeterministic edges are \longrightarrow.

Cyclically rooted (blue) Rooted (red, orange)
A typical model

$E \cap \text{DTC}(E)$ is \rightarrow, nondeterministic edges are $\rightarrow\rightarrow$.

Cyclically rooted (blue) Rooted (red, orange) Top unbounded (green)
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.

If φ is satisfiable then there is a model s.t.:
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.

If φ is satisfiable then there is a model s.t.:

- Every tree is “small”
Theorem.

Satisfiability (finite satisfiability) problems for $\text{FO}^2 + \text{DTC}(E)$ are ExpSpace-complete.

If φ is satisfiable then there is a model s.t.:

- Every tree is “small”
- The number of trees is “small”
Conclusions

- $\mathsf{FO}^2 + \mathsf{DTC}(E)$ is $\mathsf{ExpSpace}$-complete;
- its universal fragment is $\mathsf{NExpTime}$-complete;
- some undecidability results.