The Relations between Directed Tree-width & Co.

Roman Rabinovich

joint work with

Saeed Akhoondian Amiri Łukasz Kaiser Stephan Kreutzer Sebastian Siebertz

September 2014, Paris
Treewidth

Bags:
- treelike connected
- contain every vertex
- contain every edge
- \(v \in \text{bag}_1 \) and \(v \in \text{bag}_2 \) \(\Rightarrow \) \(v \) in all bags inbetween
- Treewidth of \(G \): maximum size of a bag in a minimum decomposition (minus 1)
Treewidth: Nice Properties

► A lot of different characterisations
 ► via cops and robber games
 ► elimination orderings
 ► inductive constructions

► Many algorithmic applications
► computing treewidth is NP-complete, but in PFT, good fast approximations
► good structural properties in connection to minors
Widths Generalising Treewidth to Digraphs

- directed tree-width
 - [Reed 99; Johnson, Robertson, Seymour, Thomas 01]
 - arboreal decompositions, computable in NP and FPT
 - linkage problems (NP-complete in general) are in XP: k-disjoint paths, Hamiltonian path, ...
 - cops and robber game: can be made robber-monotone, but not cop-monotone
Widths Generalising Treewidth to Digraphs

- directed tree-width
 - [Reed 99; Johnson, Robertson, Seymour, Thomas 01]
 - arboreal decompositions, computable in NP and FPT
 - linkage problems (NP-complete in general) are in XP: k-disjoint paths, Hamiltonian path, …
 - cops and robber game: can be made robber-monotone, but not cop-monotone

- Kelly-width [Hunter, Kreutzer 07]
 - Kelly-decompositions, in NP and XP
 - elimination orderings
 - $\text{dtw}(G) < \text{Kw}(G)$ (dtw bounded in Kw, but not vice versa)
 - additionally to directed treewidth: parity games in XP, L_μ-MC in FPT [Bojanczyk, Kreutzer, Dittmann 14]
 - monotonicity cost bounded? – an open question
Generalising treewidth to Digraphs

- **DAG-width**
 [Obdržálek 06; Berwanger, Dawar, Hunter, Kreutzer 06; BDHKO 12]
 - DAG decompositions, but can be super-polynomially big
 - deciding if $\text{dagw}(G) \leq k$ is \text{PSPACE}-complete.
 - $\text{dtw}(G) < \text{dagw}(G)$
 - additionally to directed treewidth: parity games in XP, L_μ-MC in FPT [Bojanczyk, Kreutzer, Dittmann 14]
 - monotonicity cost bounded? – a partial answer,
 - which implies $\text{dagw}(G) \leq Kw(G)$
 - defined weak DAG-width:
 - computable in NP,
 - seems to be algorithmically as useful as DAG-width
Generalising treewidth to Digraphs

- **DAG-width**
 [Obdržálek 06; Berwanger, Dawar, Hunter, Kreutzer 06; BDHKO 12]
 - DAG decompositions, but can be super-polynomially big
 - deciding if \(\text{dagw}(G) \leq k \) is \(\text{PSpace} \)-complete.
 - \(\text{dtw}(G) < \text{dagw}(G) \)
 - additionally to directed treewidth: parity games in XP, \(\text{L}_\mu\text{-MC} \) in FPT [Bojanczyk, Kreutzer, Dittmann 14]
 - monotonicity cost bounded? – a partial answer,
 - which implies \(\text{dagw}(G) \leq \text{Kw}(G) \)
 - defined weak DAG-width:
 - computable in NP,
 - seems to be algorithmically as useful as DAG-width

- **D-width** [Safari 05]
 - D-decompositions, in NP
 - \(\text{dtw}(G) \leq \text{dw}(G) \), even \(\text{dtw}(G) < \text{dw}(G) \)
Generalising treewidth to Digraphs

- **DAG-width**
 - [Obdržálek 06; Berwanger, Dawar, Hunter, Kreutzer 06; BDHKO 12]
 - DAG decompositions, but can be super-polynomially big
 - deciding if \(\text{dagw}(G) \leq k \) is \(\text{PSPACE}\)-complete.
 - \(\text{dtw}(G) < \text{dagw}(G) \)
 - additionally to directed treewidth: parity games in XP, \(L_\mu\)-MC in FPT [Bojanczyk, Kreutzer, Dittmann 14]
 - monotonicity cost bounded? – a partial answer,
 - which implies \(\text{dagw}(G) \leq \text{Kw}(G) \)
 - defined **weak DAG-width**:
 - computable in NP,
 - seems to be algorithmically as useful as DAG-width

- **D-width** [Safari 05]
 - D-decompositions, in NP
 - \(\text{dtw}(G) \leq \text{dw}(G) \), even \(\text{dtw}(G) < \text{dw}(G) \)

- **oriented tree-width** [discussed in the community, but not published]
The Scheme (Our Results in Red)

\[
\begin{align*}
\text{dtw} & < \text{cmdtw} < \text{DAG-w} \leq \text{K-w} \\
\text{rmdtw} & \parallel \\
\text{D-w} & < \text{otw}
\end{align*}
\]
The Scheme (Our Results in Red)

dtw \succ cmdtw \succ DAG-w \preceq K-w

example classes of graphs
The Scheme (Our Results in Red)

\[\begin{align*}
\text{dtw} & \prec \text{cmdtw} \prec \text{DAG-w} \leq \text{K-w} \\
\text{rmdtw} & \parallel \\
\text{D-w} & \prec \text{otw}
\end{align*}\]

using weak DAG-width
The Scheme (Our Results in Red)

using weak DAG-width

\[
\begin{align*}
dtw & < cmdtw & < & DAG-w & \leq & K-w \\
rmdtw & \parallel \\
& & D-w & < & otw
\end{align*}
\]

Thank you!