Expressiveness of Minmax Automata

Amaldev Manuel
LIAFA, Université Paris Diderot

joint work with

Thomas Colcombet
Stefan Göller
Minmax Automata

• Finite state automaton equipped with +ve–integer registers
• Registers updated using expressions composed of register names, min, max, +1

• Cost of a run = value of the output register at the end
 Cost of a word = minimum value of an accepting run

• Every automaton defines a function from Σ^* to $\mathbb{N} \cup \{\infty\}$
Minmax Automata

- Finite state automaton equipped with +ve-integer registers
- Registers updated using expressions composed of register names, \(\text{min}, \text{max}, +1 \)
- Cost of a run = value of the output register at the end
 Cost of a word = minimum value of an accepting run
- Every automaton defines a function from \(\Sigma^* \) to \(\mathbb{N} \cup \{\infty\} \)

\[
\begin{align*}
 a, \text{blck} & := \text{blck} + 1 \\
 b, \text{lrgst} & := \max(\text{lrgst}, \text{blck}) \\
 \text{scndlrgst} & := \max(\text{scndlrgst}, \min(\text{lrgst}, \text{blck}))
\end{align*}
\]

\(a^{n_1} b a^{n_2} b \ldots a^{n_k} b \) \(\rightarrow \) Second-largest\((n_1, n_2, \ldots, n_k) \)
Minmax Automata

• Subclasses: Min automata (Max automata) if expressions use only min (max) and +1
• Variants studied by Alur et. al., Bojańczyk, and Bojańczyk–Toruńczyk.
• Contains distance automata (by powerset like construction) hence equivalence/inclusion of automata is undecidable.
Minmax Automata

• Subclasses: **Min automata** (Max automata) if expressions use only min (max) and +1
• Variants studied by Alur et. al., Bojańczyk, and Bojańczyk–Toruńczyk.
• Contains distance automata (by powerset like construction) hence equivalence/inclusion of automata is **undecidable**.

Boundedness

Does there exist a $k \in \mathbb{N}$: for all words $w \in \Sigma^*$ $A(w) \leq k$?
Framework for solving Boundedness (Colcombet)

Cost equivalence

Functions $f, g : \Sigma^* \to \mathbb{N} \cup \{\infty\}$ are cost equivalent if over every subset $L \subseteq \Sigma^*$, f is bounded \iff g is bounded

e.g. For $w = a^{n_1}ba^{n_2}b\ldots a^{n_k}b$, $f(w) = |w|$, $g(w) = \max(\text{largest}(n_1,\ldots,n_k), \#_b(w))$
Framework for solving Boundedness (Colcombet)

Cost equivalence

Functions $f, g : \Sigma^* \to \mathbb{N} \cup \{\infty\}$ are cost equivalent if over every subset $L \subseteq \Sigma^*$, f is bounded \iff g is bounded

Example: For $w = a^{n_1}b a^{n_2}b \ldots a^{n_k}b$, $f(w) = |w|$, $g(w) = \max(\text{largest}(n_1, \ldots, n_k), \#_b(w))$

- To solve boundedness, it is sufficient to consider Automata up to cost equivalence.
- Cost function — A class of the cost equivalence relation
Regularity for cost functions

Regular cost functions (Colcombet)

• Class of cost functions paralleling regular languages
• Strong closure properties (Boolean closure, projections, reversal, …)
• Alternate characterisations (automata, logic, algebra, regular expressions, …)
• decidability — boundedness, equivalence, domination
Regularity for cost functions

Regular cost functions (Colcombet)

- Class of cost functions paralleling regular languages
- Strong closure properties (Boolean closure, projections, reversal, ...)
- Alternate characterisations (automata, logic, algebra, regular expressions, ...)
- Decidability — boundedness, equivalence, domination

B-automaton (Abdulla-Krcal-Yi, Bojańczyk-Colcombet, Kirsten)

- Finite state automata extended with +ve–integer counters
- Operations on counters — increment, epsilon (no op), reset
- Cost of a run = maximal value of any counter during the run
 Cost of a word = minimum value of an accepting run
B-automaton (Abdulla-Krcal-Yi, Bojańczyk-Colcombet, Kirsten)

- Finite state automata extended with +ve–integer counters
- Operations on counters — increment, epsilon(no op), reset
- Cost of a run = maximum value of any counter during the run
- Cost of a word = minimum value of an accepting run

\[
a^{n_1} ba^{n_2} b \ldots a^{n_k} b \rightarrow \text{Second-largest}(n_1, n_2, \ldots, n_k)
\]
Minmax and B–automata

Theorem

Minmax automata ⊆ B–automata ⊆ history–deterministic Max automata

• History–determinism — nondeterminism can be resolved by looking at the history.

• First inclusion depends on the fact, alternating B–automata = B–automata. (Colcombet–Löding)

• Second inclusion is based on a new semantics for B–automata.
Minmax and B–automata

Theorem

Minmax automata ⊆ B–automata ⊆ history–deterministic Max automata

• History–determinism — nondeterminism can be resolved by looking at the history.

• First inclusion depends on the fact, alternating B–automata = B–automata. (Colcombet–Löding)

• Second inclusion is based on a new semantics for B–automata.

Corollary
Minmax and B–automata

Theorem

Minmax automata \(\subseteq \) B–automata \(\subseteq \) history–deterministic Max automata

- **History–determinism** — nondeterminism can be resolved by looking at the history.

- First inclusion depends on the fact, alternating B–automata = B–automata. (Colcombet–Löding)

- Second inclusion is based on a new semantics for B–automata.

Corollary

Boundedness of minmax automata is decidable.
Deterministic Minmax automata

Deterministic minmax automata — when the transition relation is a function.

Open Question. Does det. minmax automata subsume B–automata?

- **Distance automata ✔** (1–counter B–automata with no reset)
- **Desert automata (Bala) ✔** (1–counter B–automata with no epsilon)
- **Distance Desert (Bala–Kirsten) ?** (1–counter B–automata)

Open Question. Does alternating distance automata subsume B–automata?
Det. min automata and det. max automata

- Strictly weaker

- Robust classes with many characterisations

- In particular, det. min automata = distance automata.

- Decidable classes — given a B-automaton it is possible to check there is an equivalent det. min (det. max) automaton.

- Provides a way to prove inexpressibility results for weighted automata.
Theorem (—, Kuperberg-Toruńczyk)

The following classes effectively coincide.

1. Deterministic max–automata.
2. 1–counter S–automata with no reset.
3. Smallest class containing size and closed under max, min with regular languages, sup–projections.
4. Cost regular expressions of the form $e_1 e_2^* e_3$ where e_1, e_2, e_3 are regular expressions
5. Cost MSO formulas of the form $\forall X (\phi(x) \rightarrow |X| \geq n)$ where $\phi(x)$ is a MSO formula
6. Functions defined by a stab. monoid M and an Ideal I such that M,I has $#$–reduction : for any $#$–expression evaluating in I there is an expression obtained by erasing all but one $#$ which is still in I.

The following classes effectively coincide.

1. Deterministic min–automata.
2. Distance automata.
3. Smallest class containing size and closed under min, max, inf–projections.
4. Cost regular expressions of the form with no * on top of a B.
5. Cost MSO formulas of the form $\exists X (\phi(x) \land |X| \leq n)$ where $\phi(x)$ is a MSO formula
6. Stab. monoid satisfying $(xe)^\#(xe^\#)^\#(xe)^\# = (xe)^\#$
Thank you