Algorithms to decide fragment enriched by regular predicates1

Luc Dartois and Charles Paperman

LIAFA
Université Paris Diderot

Highlights of logic, Game and Automata
September, 2014

1The authors are supported by the ANR project FREC, the second author is supported by Fondation CFM.
Context: Monadic Second Order logic ($\text{MSO}[<]$) on finite words over a finite alphabet.

Fragment (\mathcal{F}): set of closed formulae satisfying:
- Atomic replacement rule
- Stability by \land and \lor connectives
- Containing 0-ary predicates

Aim: to obtain decidability of $\mathcal{F}[\mathcal{P}]$ from decidability of \mathcal{F}.
Regular predicates

We will consider the following regular predicates:

- **descriptive local predicates** L_{OC_k}
 \[
 \begin{cases}
 a(x - t) & \text{for } t \leq k \\
 a(t) & \\
 a(\text{max} - t)
 \end{cases}
 \]

- **modular predicates** Mod_d
 \[
 \begin{cases}
 x \equiv r \mod d \\
 \text{max} \equiv r \mod d
 \end{cases}
 \text{ for } r < d
 \]
Regular predicates

We will consider the following regular predicates:

- **descriptive local predicates** \(\mathcal{L}_{\text{oc}}_k \) \[
\begin{cases}
 a(x - t) & \text{for } t \leq k \\
 a(t) & \\
 a(\max - t) &
\end{cases}
\]

- **modular predicates** \(\mathcal{M}_{\text{od}}_d \) \[
\begin{cases}
 x \equiv r \mod d & \text{for } r < d \\
 \max \equiv r \mod d &
\end{cases}
\]

Example: Can we obtain an algorithm to decide if language belongs to \(\text{FO}[<,\mathcal{M}_{\text{od}}_3] \) from the algorithm for \(\text{FO}[<] \)?
The \mathcal{L}-separation problem

\mathcal{L} is a class of languages.

input:

Two languages L_1 and L_2

problem:

Is there $S \in \mathcal{L}$ such that \[
\begin{align*}
L_1 &\subseteq S \\
L_2 \cap S &= \emptyset
\end{align*}
\]?
A first result

Theorem
Let \mathcal{F} be a fragment with a decidable separation problem. Then the fragments $\mathcal{F}[\text{Loc}_k], \mathcal{F}[\text{Mod}_d], \mathcal{F}[\text{Loc}_k, \text{Mod}_d]$ are decidable for any $k, d \in \mathbb{N}$.

Corollary
Let \mathcal{F} be a decidable fragment equivalent to a variety and containing the language $(ab)^*$. Then the fragments $\mathcal{F}[\text{Loc}_k], \mathcal{F}[\text{Mod}_d], \mathcal{F}[\text{Loc}_k, \text{Mod}_d]$ are decidable for any $k, d \in \mathbb{N}$.
The algorithm for $\mathcal{F}[\mathcal{L}_{0c_2}]$

notations:
- $B = A \times A^{\leq 2}$
- $\pi : B^* \to A^*$ the projection
- $K = \left\{ (a_1, 1)(a_2, a_1)(a_3, a_1a_2)(a_4, a_2a_3) \cdots (a_n, a_{n-2}a_{n-1}) \right\}$

input:
A regular language L on A^*

algorithm:
For each $u \in A^{\leq 2}$, construct

$$L_u^1 = \pi^{-1}(L \cap A^*u) \cap K \quad \text{and} \quad L_u^2 = \pi^{-1}(L^c \cap A^*u) \cap K$$

Accept iff for each $u \in A^{\leq 2}$, L_u^1 is \mathcal{F}-separable from L_u^2
The algorithm for $\mathcal{F}[\mathcal{L}oc_2]$

notations:

- $B = A \times A^{\leq 2}$
- $\pi : B^* \to A^*$ the projection
- $K = \left\{ (a_1, 1)(a_2, a_1)(a_3, a_1a_2)(a_4, a_2a_3) \cdots (a_n, a_{n-2}a_{n-1}) \right\}$

input:

A regular language L on A^*

algorithm if \mathcal{F} is a variety that contains $(ab)^*$:

For each $u \in A^{\leq 2}$, construct

$$L_1^u = \pi^{-1}(L \cap A^* u) \cap K$$

Accept iff for each $u \in A^{\leq 2}$, $L_1^u \in \mathcal{F}$
The algorithm for $\mathcal{F}[\text{Mod}_3]$

notations:

- $B = A \times \mathbb{Z}/3\mathbb{Z}$
- $\pi : B^* \to A^*$ the projection
- $K = \{(a_1, 0)(a_2, 1)(a_3, 2)(a_4, 0)\cdots(a_n, n \text{ mod } 3)\}$

input:

A regular language L on A^*

algorithm:

For each $r \in \mathbb{Z}/3\mathbb{Z}$, construct

$L_1^r = \pi^{-1}(L \cap (A^3)^*A^r) \cap K$ and $L_2^r = \pi^{-1}(L^c \cap (A^3)^*A^r) \cap K$

Accept iff for each $r \in \mathbb{Z}/3\mathbb{Z}$, L_1^r is \mathcal{F}-separable from L_2^r
The algorithm for $\mathcal{F}[\text{Mod}_3]$

notations:
- $B = A \times \mathbb{Z}/3\mathbb{Z}$
- $\pi : B^* \rightarrow A^*$ the projection
- $K = \left\{(a_1, 0)(a_2, 1)(a_3, 2)(a_4, 0)\cdots(a_n, n \mod 3)\right\}$

input:
A regular language L on A^*

algorithm if \mathcal{F} is a variety that contains $(ab)^*$:
For each $r \in \mathbb{Z}/3\mathbb{Z}$, construct

$$L_1' = \pi^{-1}(L \cap (A^3)^* A^r) \cap K$$

Accept iff for each $r \in \mathbb{Z}/3\mathbb{Z}$, $L_1' \in \mathcal{F}$
The delay question

notations:
\[\mathcal{L}_{oc} = \bigcup_k \mathcal{L}_{oc_k} \]
\[\mathcal{M}_{od} = \bigcup_d \mathcal{M}_{od_d} \]

input:
A language \(L \)

problem(s):
Can we decide if \(L \in \mathcal{F}[\mathcal{L}_{oc}], \mathcal{F}[\mathcal{M}_{od}] \) from an algorithm that decide the separation problem for \(\mathcal{F} \)?
The delay question

notations:

\[\text{Loc} = \bigcup_k \text{Loc}_k \]
\[\text{Mod} = \bigcup_d \text{Mod}_d \]

input:

A language \(L \)

problem(s):

Can we decide if \(L \in \mathcal{F}[\text{Loc}], \mathcal{F}[\text{Mod}] \) from an algorithm that decide the separation problem for \(\mathcal{F} \)?

the delay:

Compute \(k \) such that \(L \in \mathcal{F}[\text{Loc}] \rightarrow L \in \mathcal{F}[\text{Loc}_k] \)

Compute \(d \) such that \(L \in \mathcal{F}[\text{Mod}] \rightarrow L \in \mathcal{F}[\text{Mod}_d] \)
Conclusion

known result:
If \mathcal{F} is equivalent to a variety, the delay for \mathcal{Loc} is at most the size of the syntactical monoid (Straubing 1985).

our result:
If \mathcal{F} is equivalent to a variety of finite rank, the delay for \mathcal{Mod} is computable.

open question:
Can one compute the delay for \mathcal{Mod} for the fragment $B\Sigma_m$?