Half-Positional Two-Player Stochastic Games

Edon Kelmendi Hugo Gimbert

LaBRI, Université de Bordeaux

Highlights Paris,
September 2014
An infinite play:
\[s_0 a_0 s_1 a_1 \cdots \]

Payoff function:
\[f: \text{infinite play} \rightarrow \mathbb{R} \]
Borel-measurable and bounded

Player 1 prefers: infinite plays with larger payoff,
Player 2 prefers: infinite plays with smaller payoff.
Two players
stochastic
zero-sum
perfect-information
infinite duration
Strategies:

\[\sigma : (SA)^* S_1 \rightarrow \Delta(A) \]
\[\tau : (SA)^* S_2 \rightarrow \Delta(A) \]

Question:

When can we play optimally with a positional (deterministic and memoryless)

\[\sigma : S_1 \rightarrow A \]
Theorem

If the payoff function is shift-invariant and submixing then the game is half-positional.

Half-positional means: Player 1 has an optimal positional strategy
Definition
A payoff function \(f \) is **shift invariant** if for all infinite plays \(p = p_1p_2 \) where \(p_1 \) is a finite prefix:

\[
f(p_1p_2) = f(p_2)
\]

Definition
A payoff function \(f \) is **submixing** if for all infinite plays \(p \) and all factorizations \(p = u_1v_1u_2v_2\ldots \),

\[
f(p) \leq \max\{f(u_1u_2\ldots), f(v_1v_2\ldots)\}.
\]
Sufficient condition to guarantee the existence of a positional optimal strategy for Player 1:

Theorem (Kopczynski 06, Gimbert Zielonka 06)

Two player deterministic games with submixing and shift-invariant payoff functions.

Theorem (Gimbert 07)

One player stochastic games with submixing and shift-invariant payoff functions.

Our main result:

Theorem

Two-player stochastic games with submixing and shift-invariant payoff functions.
Payoff functions that are shift-invariant and submixing:

- parity
- mean-payoff
- generalized mean-payoff
- limsup
- (discount)
Proof by induction on the number of actions.

Main technical point:

Lemma

For all $\epsilon > 0$, *in games with shift-invariant payoff functions, both players have* ϵ*-subgame perfect strategies.*

i.e strategies that are not only ϵ-optimal when the game starts but also whatever finite play has already been played.*
Future work

- A necessary condition,
- Infinite but compact action space.