First Cycle Games
or
Why games that are memoryless determined are typically easy to identify

Benjamin Aminof, Sasha Rubin (TU Wien)

Highlights 2014
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ♦ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player \(\bullet \) wins if the **first cycle** has even length; otherwise Player \(\diamond \) wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the **first cycle** has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the **first cycle** has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the **first cycle** has even length; otherwise Player ◆ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ♦ wins.
First Cycle Game: An Example

- Two players move a token along edges of a graph.
- Player ● wins if the first cycle has even length; otherwise Player ◆ wins.
Graph Games

Setting
Two player games, perfect information, finite arena, pure strategies, single initial state.

Agenda
Understand which games are memoryless determined — one of the players has a memoryless winning strategy.

Approach
First Cycle Games, inspired by Ehrenfeucht and Mycielski (’76).
First Cycle Game = \langle Arena, Language \rangle

\[FC\Gamma \langle A, P \rangle \]

- Arena \(A = (V, E, v_0, \mathbb{U}, \lambda) \) where \(\lambda : V \rightarrow \mathbb{U} \).
- Language of finite strings \(P \subseteq \mathbb{U}^* \).
- A play is an infinite path starting in initial state \(v_0 \in V \).
- A play is won by ● if the sequence of labels on the first cycle on the play is in \(P \); otherwise it is won by ◆.
Examples of $P \subseteq U^*$

- $P = \text{even length.}$
- $P = \text{average weight positive (}U = \mathbb{Q})$.
- $P = \text{largest priority even (}U = \mathbb{Z})$.

Finitary versions of classic games.
Examples of $P \subseteq U^*$

- $P = \text{even length}$.
- $P = \text{average weight positive} \,(U = \mathbb{Q})$.
- $P = \text{largest priority even} \,(U = \mathbb{Z})$.

Finitary versions of classic games.

Goal
Characterise those $P \subseteq U^*$ such that every FCG $\langle A, P \rangle$ is memoryless determined.
Easy-to-check properties of P

$P \subseteq U^*$ is
- **shift-closed** if $a \cdot b \in P \implies b \cdot a \in P$,
- **cat-closed** if $a, b \in P \implies a \cdot b \in P$, $(a, b \in U^*)$.

<table>
<thead>
<tr>
<th>$P \subseteq U^*$</th>
<th>shift-closed</th>
<th>cat-closed</th>
<th>$U^* \setminus P$ cat-closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest priority even</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ave weight positive</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Even length</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>
FCGs that are memoryless determined are typically easy to identify

Theorem. If

1. P is shift-closed, and
2. both P and $\neg P$ are cat-closed,

then every first cycle game $\langle A, P \rangle$ is memoryless determined.
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles

First Cycle!
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles

Second Cycle!
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles
What is the connection to usual infinite duration games?

Decomposition of a play into simple cycles

Third Cycle!
Greedy Games

Game $G = \langle A, W \rangle$ is arena A and winning condition $W \subseteq U^\omega$.

Definition

Game G is P-**greedy** if for every play π:

1. labeling of every cycle of π is in $P \implies \pi$ is won by \blackCircle;
2. labeling of every cycle of π is in $\neg P \implies \pi$ is won by \blackDiamond.

Example

- Parity Games are P-greedy where $P = \text{max priority is even}$.
- Mean-Payoff Games are P-greedy where $P = \text{avg weight is positive}$.
Connecting FCG to Greedy Games

Theorem.
If $G = \langle A, W \rangle$ is P-greedy then a memoryless strategy is winning in G iff it is winning in FCG $\langle A, P \rangle$.

Corollary
The following games are memoryless determined (finite arenas):
1. Parity games
2. Mean payoff games
3. Energy games (initial credit problem)
Recipe for proving G is memoryless determined

1. **Finitise** the winning condition of G to get a language $P \subseteq \mathbb{U}^*$.
2. Show that G is $P\text{-greedy}$.
3. Show that P is shift-closed, cat-closed, and $\neg P$ is cat-closed.