GAME OR NOT GAME?

A. Facchini (U. Warsaw)
F. Murlak (U. Warsaw)
M. Skrzypczak (U. Warsaw)

HIGHLIGHTS 2013, 19-21 September, Paris
Index / Wadge problem for a class C

INPUT: a language L in C

OUTPUT:
- the minimal (non-det / alternating) index needed to recognize L
- the Wadge degree of L
Game Automata

- a finite alphabet Σ,
- a finite set of states Q,
- an initial state $q_I \in Q$,
- a transition function $\delta : Q \times \Sigma \rightarrow \{(0, q_0) \lor (1, q_1), (0, q_0) \land (1, q_1)\}$,
- a rank function $\text{rank} : Q \rightarrow \mathbb{N}$
\(W_{(1,3)}\)

\[
\begin{align*}
(\Box, m) & \mapsto \langle m \rangle \\
(\square, m) & \mapsto [m]
\end{align*}
\]

\[
\begin{array}{c}
\langle 2 \rangle \\
\langle 3 \rangle \\
[2] \\
\langle 2 \rangle \\
\langle 1 \rangle \\
[3]
\end{array}
\]

\[t \in T_\Sigma, \text{ where } \Sigma = \{\Diamond, \Box\} \times \{1, 2, 3\}\]
Non-deterministic / Alternating

Game

Deterministic

$W_{(1,3)}$
Non-deterministic / Alternating

\[M = \{ t \in T_{\{a,b\}} : t(0) = t(1) \} \]
Proposition (Duparc, F., M., I I): The class of game languages is the largest class of regular languages:

- extending the deterministic one,

- closed under complementation and substitution,

- and for which substitution preserves the equivalence relations of having the same index and having the same Wadge degree.
Index problem for a class C

INPUT: a language \(L \) in \(C \)

OUTPUT: the minimal (non-det / alternating) index needed to recognize \(L \)
Index problem for a class C

INPUT: a language L in C

OUTPUT: the minimal (non-det / alternating) index needed to recognize L

Theorem (FMS, LICS 13): The non-deterministic and alternating index problems are decidable for game automata
Index problem for a class \mathcal{C}

INPUT: a language L in \mathcal{C}

OUTPUT: the minimal (non-det / alternating) index needed to recognize L
Theorem (Niwinski-Walukiewicz 03): Given a regular language \(L \), it is decidable whether \(L \) is recognizable by a deterministic automaton
Theorem (Niwinski-Walukiewicz 03): Given a regular language L, it is decidable whether L is recognizable by a deterministic automaton.

Theorem (FMS, LICS 13): Given a regular language L, it is decidable whether L is recognizable by a game automaton.
Proof idea: Use of some basic tools from the composition methods.

\[w \in (\{0, 1\} \cup \Sigma)^* \Sigma \]
Proof idea: Use of some basic tools from the composition methods.

\[w \in (\{0, 1\} \cup \Sigma)^+ \{0, 1\} \]
Proof idea: Given a regular language L, trace unlabelled profile realisation t.
binary profiles

• $Z_0 \times Tr_\Sigma$
• $Tr_\Sigma \times Z_1$
• $Z_0 \times Tr_\Sigma \cup Tr_\Sigma \times Z_1$
• $Z_0 \times Z_1$

unary profiles

• Z

non trivial

(labelled traces) (unlabelled traces)
Definition:

- A trace w has non-trivial profile Z in a regular language M, if for each realisation t of w either $t^{-1}M$ is trivial or $t^{-1}M = Z$, and for some realisation t_0, $t_0^{-1}M = Z$.
Given L, realisation t
Given L, every trace has at most one profile in a regular language.
\[M = \{ t \in T_{\{a,b\}} : t(0) = t(1) \} \]

0 has no profile in \(M \)
A regular language is **locally game** if every trace has a profile in it.
A regular language is **locally game** if every trace has a profile in it.
A regular language is **locally game** if every trace has a profile in it.

L is game

\[\downarrow \]

L is locally game
A regular language is **locally game** if every trace has a profile in it.

L is game

\[\uparrow \]

??

L is locally game
Counter-example:

\[a\text{-reachable} \]

\[Thin := \{ t \in Tr_{\{a,b\}} \mid ||\{ x \in \text{dom}(t) \mid x \text{ is } a\text{-reachable}\}|| \leq \aleph_0 \} \]
M, t, π
M, t, π
M, t, π
M, t, π

$t \in Z_0$

$Z_0 \times Z_1$
M, t, π

$Z_0 \times Tr \cup Tr \times Z_1$

$t \notin Z_0$
M, t, π

t resolves M up to π

if there is such a t, π is M-correct
t resolves M up to π

if there is such a t, π is M-correct regular property
DFA

being locally game

Deterministic parity aut.

being M-correct
G_M

(p, q)
determine profile (transition and «local» acceptance)

\[G_M \]
determine priority («global» acceptance)

\((p, q) \)
Theorem: A regular language M is recognised by a game automaton iff M is locally game and

$$\mathcal{L}(G_M, q_M) = M.$$