On Symmetric Circuits and FPC

Anuj Dawar

University of Cambridge Computer Laboratory

joint work with Matthew Anderson

Highlights, 20 September 2013
Is there a logic for P?

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n:
Is there a logic for P?

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n:

- inputs to C_n are n^2 *potential edges*, each taking value 0 or 1;
Is there a logic for P?

A property of graphs (or other relational structures) in P is recognised by a family of Boolean circuits C_n:

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial $p(n)$;
Is there a logic for P?

A property of graphs (or other relational structures) in P is recognised by a family of Boolean circuits C_n:

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial $p(n)$;
- the family is uniform, so the function $n \mapsto C_n$ is in P (or DLogTime).
Is there a logic for \mathbb{P}?

A property of *graphs* (or other relational structures) in \mathbb{P} is recognised by a family of Boolean circuits C_n:

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial $p(n)$;
- the family is uniform, so the function $n \mapsto C_n$ is in \mathbb{P} (or DLogTime).

C_n is *invariant* if the output is unchanged under a permutation of the inputs induced by a permutation of $[n]$.

Anuj Dawar
September 2013
Is there a logic for P?

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n:

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial $p(n)$;
- the family is uniform, so the function $n \mapsto C_n$ is in P (or $\mathsf{DLogTime}$).

C_n is *invariant* if the output is unchanged under a permutation of the inputs induced by a permutation of $[n]$.

Note: dropping the uniformity condition gives us $\mathsf{P/poly}$.

Note also: it makes no difference if the circuits are over the **Boolean basis** $\{\text{AND, OR, NOT}\}$ or a richer basis (within P).
Symmetric Circuits

Say C_n is *symmetric* if any permutation of $[n]$ applied to its inputs can be extended to an automorphism of C_n.
Say C_n is *symmetric* if any permutation of $[n]$ applied to its inputs can be extended to an automorphism of C_n.

- Any symmetric circuit is invariant.
Say C_n is symmetric if any permutation of $[n]$ applied to its inputs can be extended to an automorphism of C_n.

- Any symmetric circuit is invariant.
- Any formula of FP translates into a uniform family of polynomial-size symmetric Boolean circuits.
- Any formula of FPC translates into a uniform family of polynomial-size symmetric threshold (or majority) circuits.
Symmetric Circuits

- There is trivially a polynomial-size family of symmetric circuits C_n deciding whether n is even.
Symmetric Circuits

- There is trivially a polynomial-size family of symmetric circuits C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges? No – as we shall see.
Symmetric Circuits

- There is trivially a polynomial-size family of symmetric circuits C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges? No – as we shall see.
- Are polynomial-size families of uniform symmetric threshold circuits more powerful than Boolean circuits? Yes – follows from above.
Symmetric Circuits

- There is trivially a polynomial-size family of symmetric circuits C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges?
 No – as we shall see.
- Are polynomial-size families of uniform symmetric threshold circuits more powerful than Boolean circuits?
 Yes – follows from above.
- Can every invariant circuit be translated into an equivalent symmetric threshold circuit, with only polynomial blow-up?
 No – as we shall see.
Main Results

Theorem
A class of graphs is accepted by a \mathbf{P}-uniform, polynomial-size, symmetric family of Boolean circuits iff it is definable by an \mathbf{FP} formula interpreted in $G \uplus ([n], <)$.
Main Results

Theorem
A class of graphs is accepted by a \(P \)-uniform, polynomial-size, symmetric family of Boolean circuits \textit{iff} it is definable by an \(FP \) formula interpreted in \(G \uplus ([n], <) \).

Theorem
A class of graphs is accepted by a \(P \)-uniform, polynomial-size, symmetric family of threshold circuits \textit{iff} it is definable in \(FPC \).
Main Results

Theorem
A class of graphs is accepted by a \(P\)-uniform, polynomial-size, symmetric family of Boolean circuits iff it is definable by an \(FP\) formula interpreted in \(G \uplus ([n], <)\).

Theorem
A class of graphs is accepted by a \(P\)-uniform, polynomial-size, symmetric family of threshold circuits iff it is definable in \(FPC\).

This gives a natural and purely circuit-based characterisation of \(FPC\) definability.
Main Technical Tools

For a gate g in a symmetric circuit C_n, say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

Anuj Dawar
September 2013
Main Technical Tools

For a gate g in a symmetric circuit C_n, say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\text{Stab}^•(\mathcal{P}) \subseteq \text{Stab}(g) \subseteq \text{Stab}(\mathcal{P})$$
Main Technical Tools

For a gate g in a symmetric circuit C_n, say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\text{Stab}^\bullet(\mathcal{P}) \subseteq \text{Stab}(g) \subseteq \text{Stab}(\mathcal{P})$$

- Each g has a unique coarsest support, $\text{Supp}(g)$.
- An upper bound on $\text{Stab}(g)$ gives us a lower bound on the orbit of g.
Main Technical Tools

For a gate g in a symmetric circuit C_n, say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\text{Stab}^\bullet(\mathcal{P}) \subseteq \text{Stab}(g) \subseteq \text{Stab}(\mathcal{P})$$

- Each g has a unique coarsest support, $\text{Supp}(g)$.
- An upper bound on $\text{Stab}(g)$ gives us a lower bound on the orbit of g.

Conversely, knowing that the orbit of g is at most polynomial in n gives us bounds on $\text{Supp}(g)$.

Anuj Dawar September 2013
Support Theorem

For a circuit C, $\text{Supp}(C)$ denotes the maximum over all gates g in C of the size of the union of all but the largest part in $\text{Supp}(g)$.
Support Theorem

For a circuit \(C \), \(\text{Supp}(C) \) denotes the maximum over all gates \(g \) in \(C \) of the size of the union of all but the largest part in \(\text{Supp}(g) \).

Theorem

For any \(1 > \epsilon \geq \frac{2}{3} \), let \(C \) be a symmetric \(s \)-gate circuit over \([n]\) with \(n \geq \frac{48}{\epsilon} \), and \(s \leq 2^{n^{1-\epsilon}} \). Then

\[
\text{Supp}(C) \leq \frac{20 \log s}{\epsilon \log n}.
\]
Support Theorem

For a circuit C, $\text{Supp}(C)$ denotes the maximum over all gates g in C of the size of the union of all but the largest part in $\text{Supp}(g)$.

Theorem

For any $1 > \epsilon \geq \frac{2}{3}$, let C be a symmetric s-gate circuit over $[n]$ with $n \geq \frac{48}{\epsilon}$, and $s \leq 2^{n^{1-\epsilon}}$. Then

$$\text{Supp}(C) \leq \frac{20 \log s}{\epsilon \log n}.$$

Corollary

Polynomial-size symmetric circuits have constant support.
Translating Symmetric Circuits to Formulas

Given a polynomial-time function \(n \mapsto C_n \) that generates symmetric circuits:

1. There is a formula of FP interpreted on \(([n], <) \) that defines a structure \(C_n \).
2. Label gates with their support partition.
3. Transform labels into tuples by duplicating gates.
4. Determine equality test indicating edges of \(C_n \).
5. Evaluate circuit on unordered universe (in FP for a Boolean circuit, in FPC for one with threshold gates.)
<table>
<thead>
<tr>
<th>Logic</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP on structures with a disjoint number sort ([n], <).</td>
<td>Poly-size symmetric Boolean circuits.</td>
</tr>
<tr>
<td>Additional predicates on number sort.</td>
<td>Non-uniformity (of function (n \mapsto C_n)).</td>
</tr>
<tr>
<td>Connections between element sort and number sort (FPC and FPrk).</td>
<td>Additional gates (counting and rank).</td>
</tr>
<tr>
<td>Choiceless polynomial time.</td>
<td>Breaking symmetry (how?).</td>
</tr>
</tbody>
</table>