Highlights of Logic, Games and Automata

Emanual Kieroński, Jakub Michaliszyn, Jan Otop
Modal logic

- Many different modal logics (K4, S5, CTL, LTL, ATL, HS, CTL*K)
- Many applications in verification, planing, linguistics
- Many proofs, many papers
Modal logic

- Many different modal logics (K4, S5, CTL, LTL, ATL, HS, CTL*K)
- Many applications in verification, planing, linguistics
- Many proofs, many papers
- Our area of interest: a comprehensive study on the satisfiability problem.
Kripke semantics

- Kripke structure — a frame + a labelling.
Kripke semantics

- Kripke structure — a *frame* + a *labelling*.
- \mathcal{K}-SAT — local satisfiability problem w.r.t. \mathcal{K}.
- \mathcal{K}-GSAT — global satisfiability problem w.r.t. \mathcal{K}.
Kripke semantics

- Kripke structure — a \textit{frame} + a \textit{labelling}.
- \mathcal{K}-SAT — local satisfiability problem w.r.t. \mathcal{K}.
- \mathcal{K}-GSAT — global satisfiability problem w.r.t. \mathcal{K}.

Our ultimate goal

For all first-order definable classes \mathcal{K}, determine the decidability and complexity of \mathcal{K}-SAT and \mathcal{K}-GSAT.

We are also interested in finite satisfiability.
Negative results

- (E. Hemaspaandra, "The Price of Universality", 1996) \(\mathcal{K}\)-GSAT is undecidable for some \(\forall\text{FO}\)-definable \(\mathcal{K} \).

- (E. Hemaspaandra, H. Schnoor, MFCS 2011) \(\mathcal{K}\)-SAT is undecidable for some \(\forall\text{FO}\)-definable \(\mathcal{K} \).

Jakub Michaliszyn (Wrocław) Questions are welcomed! Highlights’13 4 / 12
Negative results

- (E. Hemaspaandra, H. Schnoor, MFCS 2011) K-SAT is undecidable for some \forallFO-definable K.

- (E. Kieroński, J. Michaliszyn, J. Otop, FSTTCS 2011) K-GSAT and K'-SAT are undecidable for some \forallFO3-definable K and K' (holds also for finite satisfiability).

\[
\neg xRy \lor \neg xRz \lor yRz \lor zRy \lor yRx \lor zRx
\]
Positive results

Standard translation

Is φ satisfied w.r.t. the class defined by Φ? \rightarrow Is $\Phi \land ST(\varphi)$ satisfiable?
Positive results

Standard translation

Is φ satisfied w.r.t. the class defined by Φ? \rightarrow Is $\Phi \land ST(\varphi)$ satisfiable?

Decidability in many interesting cases (even multimodal), including:

- FO^2:
 - with one transitive relation (W. Szwast, L. Tendera, 2012),
 - with counting quantifiers (I. Pratt-Hartmann, 2005),

- Guarded Fragment:
 - with fixed points (E. Grädel, I. Walukiewicz, 1999),
 - with the transitive closure operator in guards (J. Michaliszyn, 2009).

Jakub Michaliszyn (Wrocław)
Questions are welcomed!
Positive results

Standard translation

Is \(\varphi \) satisfied w.r.t. the class defined by \(\Phi \)? \(\rightarrow \) Is \(\Phi \land ST(\varphi) \) satisfiable? Decidability in many interesting cases (even multimodal), including

- FO\(^2\):
 - with one transitive relation (W. Szwast, L. Tendera, 2012),
 - with counting quantifiers (I. Pratt-Hartmann, 2005),

- Guarded Fragment:
 - with fixed points (E. Grädel, I. Walukiewicz, 1999),
 - with the transitive closure operator in guards (J. Michaliszyn, 2009).

- High complexity.

Questions are welcomed!

Highlights’13 5 / 12
Positive results

For any \mathcal{K} definable by universal Horn formulas, \mathcal{K}-SAT and \mathcal{K}-GSAT are decidable.

J. Michaliszyn, J. Otop, LICS 2012
Positive results

For any \mathcal{K} definable by universal Horn formulas, \mathcal{K}-SAT and \mathcal{K}-GSAT are decidable.

Also finite satisfiability of modal logic is decidable w.r.t. the classes definable by universal Horn formulas.
General satisfiability

<table>
<thead>
<tr>
<th>Type</th>
<th>\mathcal{K}_Φ-GSAT</th>
<th>\mathcal{K}_Φ-SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1+</td>
<td>EXPTIME-c</td>
<td>PSPACE-c</td>
</tr>
<tr>
<td>S1−</td>
<td>PSPACE-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>S2+</td>
<td>NP-c</td>
<td>PSPACE-c</td>
</tr>
<tr>
<td>S2−</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>S3+</td>
<td>impossible</td>
<td></td>
</tr>
<tr>
<td>S3−</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
</tbody>
</table>

Except for some trivial formulas like $xRx \land (xRx \Rightarrow \bot)$.
Finite satisfiability

<table>
<thead>
<tr>
<th>Type of Φ</th>
<th>\mathcal{K}_Φ-GFINSAT</th>
<th>\mathcal{K}_Φ-FINSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3+, S3–</td>
<td>FMP, NP-c</td>
<td></td>
</tr>
<tr>
<td>S2+, S2–</td>
<td>NEXPTIME</td>
<td></td>
</tr>
<tr>
<td>S1+ & “merges”</td>
<td>Lack of FMP (always!), PSPACE-c</td>
<td>FMP, PSPACE-c</td>
</tr>
<tr>
<td>S1+ & not “merges”</td>
<td>FMP, EXPTIME-c</td>
<td>FMP, PSPACE-c</td>
</tr>
<tr>
<td>S1–</td>
<td>FMP, PSPACE-c</td>
<td>FMP, NP-c</td>
</tr>
</tbody>
</table>
Finite vs. General

J. Michaliszyn, J. Otop, P. Witkowski, Gandalf 2012

- There is an undecidable logic that is finitely decidable
- There is a decidable logic that is finitely undecidable
Transitiveness

- Transitive modalities are popular in practice:
- F, G of LTL
- B, D, L of HS logic
- K_i, C_G of epistemic logic

For any \mathcal{K} of transitive frames definable by universal formulas, \mathcal{K}-SAT and \mathcal{K}-GSAT are decidable. The same holds for the finite satisfiability problem.

J. Michaliszyn, J. Otop, CSL 2013
So what?

Our ultimate goal for all first-order definable classes K, classify K-SAT, K-GSAT (and their finite counterparts) w.r.t. the decidability status and the complexity.

Why?

Better understanding, easy modifications, unified theory.

The meta-problem: Input: A first-order formula Φ that defines a class of frames K. Question: Is K-SAT decidable? Is the meta-problem decidable?

Questions are welcomed!
So what?

Our ultimate goal

For all first-order definable classes \mathcal{K}, classify \mathcal{K}-SAT, \mathcal{K}-GSAT (and their finite counterparts) w.r.t. the decidability status and the complexity.
So what?

Our ultimate goal
For all first-order definable classes \(\mathcal{K} \), classify \(\mathcal{K}\text{-SAT}, \mathcal{K}\text{-GSAT} \) (and their finite counterparts) w.r.t. the decidability status and the complexity.

Why?

- Better understanding
- Easy modifications
- Unified theory
So what?

Our ultimate goal
For all first-order definable classes \(\mathcal{K} \), classify \(\mathcal{K}\)-SAT, \(\mathcal{K}\)-GSAT (and their finite counterparts) w.r.t. the decidability status and the complexity.

Why?
- Better understanding
- Easy modifications
- Unified theory

The “metaproblem”
Input: A first-order formula \(\Phi \) that defines a class of frames \(\mathcal{K} \).
Question: Is \(\mathcal{K}\)-SAT decidable?

Is the metaproblem decidable?
Thank you for your attention!

Summary

- We study the **satisfiability** problem of **modal logic** over **first-order** definable classes of **frames**.
- In some cases the problem is **undecidable**.
- There are wide classes of formulas that lead to **decidable** problems (Horn formulas, transitive formulas, FO^2, GF).
- Our goal: to classify them all.

Open: Is the “metaproblem” decidable?

Input: A first-order formula Φ that defines a class of frames \mathcal{K}.

Question: Is \mathcal{K}-SAT decidable?