Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \Rightarrow find restrictions on the queries
Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \(\Rightarrow \) find **restrictions** on the queries

![Diagram: query Q to associated graph]

Fact: evaluation is **polynomial** for **acyclic** queries
Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \(\Rightarrow \) find restrictions on the queries

Fact: evaluation is polynomial for acyclic queries
Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \(\Rightarrow\) find restrictions on the queries

Fact: evaluation is polynomial for acyclic queries
Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \Rightarrow find **restrictions** on the queries

Fact: evaluation is **polynomial** for **acyclic** queries
Semantic acyclicity

General goal: evaluate queries over (relational or graph) databases

NP-complete problem \Rightarrow find restrictions on the queries

Fact: evaluation is polynomial for acyclic queries

a query is semantically acyclic if it is equivalent to an acyclic query
Semantic acyclicity

- A query is **semantically acyclic** if it is equivalent to an acyclic query.

- Semantic acyclicity is well-understood for **relational databases**.

<table>
<thead>
<tr>
<th>Relational DB</th>
<th>Non-acyclic</th>
<th>Sem. acyclic</th>
<th>Acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NP-complete</td>
<td>tractable (Chen, Dalmau)</td>
<td>linear (Yannakakis)</td>
</tr>
</tbody>
</table>
Semantic acyclicity

- A query is **semantically acyclic** if it is equivalent to an acyclic query.

- Semantic acyclicity is well-understood for **relational databases**.

<table>
<thead>
<tr>
<th>Relational DB</th>
<th>Non-acyclic</th>
<th>Sem. acyclic</th>
<th>Acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NP-complete</td>
<td>tractable (Chen, Dalmau)</td>
<td>linear (Yannakakis)</td>
</tr>
</tbody>
</table>

- **Goal**: explore semantic acyclicity for **graph databases**.
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ

\[
\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))
\]

where the r_is are regular expressions over Σ

$r(u, v) \equiv$ there is a path satisfying r from u to v
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over \(\Sigma \)
- **CRPQ**: \(\exists y_1, \ldots, y_n \left(r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k) \right) \)
 where the \(r_i \)'s are regular expressions over \(\Sigma \)
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ
- **CRPQ**: $\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))$
 where the r_is are regular expressions over Σ
- $r(u, v) \equiv$ there is a path satisfying r from u to v
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ
- **CRPQ**: $\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))$
 where the r_is are regular expressions over Σ
- $r(u, v) \equiv$ there is a path satisfying r from u to v

$\exists v, w (\text{carry}^*(v, w) \land \text{fly}(v, w) \land \text{rainbow}(w, w))$

selects the animals who can reach the rainbow
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ
- **CRPQ**: $\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))$
 where the r_i’s are regular expressions over Σ
- $r(u, v) \equiv$ there is a path satisfying r from u to v

$\exists w, \overset{\circ}{w} (\text{carry}^*(w, \overset{\circ}{w}) \land \text{fly}(w, \overset{\circ}{w}) \land \text{rainbow}(\overset{\circ}{w}, w))$

selects the animals who can reach the rainbow
Moving to the setting of graph databases

- **graph databases**: directed graphs with labeled edges over Σ
- **CRPQ**: $\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))$
 where the r_is are regular expressions over Σ
- $r(u, v) \equiv$ there is a path satisfying r from u to v

$\exists w, \text{no} \ (\text{carry}^*(w, \text{no}) \land \text{fly}(\text{no}, w) \land \text{rainbow}(\text{no}, w))$
selects the animals who can reach the rainbow
Moving to the setting of graph databases

- **Graph databases**: directed graphs with labeled edges over Σ

- **CRPQ**: $\exists y_1, \ldots, y_n (r_1(u_1, v_1) \land \cdots \land r_k(u_k, v_k))$
 where the r_i's are regular expressions over Σ

- $r(u, v) \equiv$ there is a path satisfying r from u to v

$$\exists v, w \ (\text{carry}^*(v, w) \land \text{fly}(v, w) \land \text{rainbow}(w, w))$$

selects the animals who can reach the rainbow.
Acyclicity on graph databases

- evaluation of CRPQs is **NP-complete** ($|G|^{O(|Q|)}$)
Acyclicity on graph databases

- Evaluation of CRPQs is **NP-complete** \((|G|^{O(|Q|)})\)

- A CRPQ is **acyclic** if its associated graph does not contain a cycle of length \(> 2\)

\[
\exists v, w [\text{carried}^*(v, u) \land \text{fly}(v, w) \land \text{rainbow}(w, w)]
\]
Acyclicity on graph databases

- evaluation of CRPQs is NP-complete ($|G|^{O(|Q|)}$)

- a CRPQ is acyclic if its associated graph does not contain a cycle of length > 2

\[\exists v, w \ [\text{carried}^*(v, u) \land \text{fly}(v, w) \land \text{rainbow}(w, w)] \]

- evaluation of acyclic CRPQ Q over a graph G: $O(|G|^2|Q|^2)$
Acylicity on graph databases

- Evaluation of CRPQs is \(\text{NP-complete} \ (|G|^O(|Q|)) \)

- A CRPQ is **acyclic** if its associated graph does not contain a cycle of length > 2

 \[\exists v, w \ [\text{carried}^*(v, u) \land \text{fly}(v, w) \land \text{rainbow}(w, w)] \]

- Evaluation of acyclic CRPQ \(Q \) over a graph \(G \): \(O(|G|^2|Q|^2) \)

- A UCRPQ is **semantically acyclic** if it is equivalent to a union of acyclic CRPQs
Main result

There is a \textit{2EXPSPACE} algorithm that on input Q

- checks whether Q is semantically acyclic
- if so, outputs an equivalent acyclic UCRPQ Q' of exponential size

\[Q \xrightarrow{2 \textit{ExpSpace}} Q' \]

\[|Q'| \leq 2^{\text{poly}(|Q|)} \]
Main result

There is a 2EXPSPACE algorithm that on input Q

- checks whether Q is semantically acyclic
- if so, outputs an equivalent acyclic UCRPQ Q' of exponential size

\[Q \xrightarrow{2\text{EXPSPACE}} Q' \]

Remark. It cannot be dramatically improved

- checking whether a UCRPQ is semantically acyclic is EXSPACE-hard
- the exponential size of Q' is optimal
Main result

There is a \(2\text{EXPSPACE}\) algorithm that on input \(Q\)

- checks whether \(Q\) is semantically acyclic
- if so, outputs an equivalent acyclic UCRPQ \(Q'\) of \text{exponential} size

\[
\begin{array}{c}
Q \xrightarrow{2\text{EXPSPACE}} Q' \\
\text{Acyclic} \quad |Q'| \leq 2^{\text{poly}(|Q|)}
\end{array}
\]

Remark. It cannot be dramatically improved

- checking whether a UCRPQ is semantically acyclic is \(\text{EXSPACE-hard}\)
- the \text{exponential} size of \(Q'\) is \text{optimal}

Consequence. evaluation of semantically acyclic UCRPQs is \text{fixed parameter tractable}:

\[
O(|G|^2 f(|Q|)) \quad \text{(as opposed to the general case } |G|^{O(|Q|)})
\]
Evaluation of semantically acyclic UCRPQs is fixed parameter tractable

Recall. If Q semantically acyclic, we can compute in 2EXPSPACE an equivalent acyclic UCRPQ Q' of size exponential in Q.

\[|G|^{o(|Q|)} \]
Evaluation of semantically acyclic UCRPQs is fixed parameter tractable

Recall. If Q semantically acyclic, we can compute in 2EXPSPACE an equivalent acyclic UCRPQ Q' of size exponential in Q.
Evaluation of semantically acyclic UCRPQs is fixed parameter tractable

Recall. If \(Q \) semantically acyclic, we can compute in \(2\text{EXPSPACE} \) an equivalent acyclic UCRPQ \(Q' \) of size exponential in \(Q \)
Evaluation of semantically acyclic UCRPQs is fixed parameter tractable

Recall. If Q semantically acyclic, we can compute in 2EXPSPACE an equivalent acyclic UCRPQ Q' of size exponential in Q
Evaluation of semantically acyclic UCRPQs is fixed parameter tractable

Recall. If Q semantically acyclic, we can compute in 2EXPSPACE an equivalent acyclic UCRPQ Q' of size exponential in Q.

Evaluation of semantically acyclic UCRPQs is fixed parameter tractable
Conclusion and open questions

- checking for semantic acyclicity is in 2EXPSPACE and EXPSPACE-hard
- evaluation of semantically acyclic queries is fixed-parameter tractable
Conclusion and open questions

- checking for semantic acyclicity is in 2EXPSPACE and EXPSPACE-hard
- evaluation of semantically acyclic queries is fixed-parameter tractable

- extension to wider classes (e.g. bounded treewidth)
- exact complexity of evaluation of semantically acyclic UCRPQs