# Monte Carlo Tree Search guided by Symbolic Advice for MDPs



Université Libre de Bruxelles

September 16, 2020 HIGHLIGHTS 2020

#### Markov Decision Process



#### Markov Decision Process



Link with infinite-horizon average reward for H large enough



Iterative construction of a sparse tree with value estimates



Iterative construction of a sparse tree with value estimates
Selection of a new node → simulation



- Iterative construction of a sparse tree with value estimates
- Selection of a new node  $\rightsquigarrow$  simulation  $\rightsquigarrow$  update of the estimates



With UCT (Kocsis & Szepesvári, 2006) as the selection strategy:

- After a given number of iterations *n*, MCTS outputs the best action
- The probability of choosing a suboptimal action converges to zero
- $v_i$  converges to the real value of  $a_i$  at a speed of  $(\log n)/n$



An advice is a subset of Paths<sup>H</sup>(s<sub>0</sub>)

• Defined symbolically as a logical formula  $\varphi$  (reachability or safety property, LTL formula over finite traces, regular expression ...)



An advice is a subset of Paths<sup>H</sup>(s<sub>0</sub>)

• Defined symbolically as a logical formula  $\varphi$  (reachability or safety property, LTL formula over finite traces, regular expression ...)



• An advice is a subset of Paths<sup>H</sup>( $s_0$ )

• Defined symbolically as a logical formula  $\varphi$  (reachability or safety property, LTL formula over finite traces, regular expression ...)



Strongly enforceable advice: can be enforced by controller if the MDP is seen as a game  $\rightarrow$  does not partially prune stochastic transitions



Strongly enforceable advice: can be enforced by controller if the MDP is seen as a game  $\rightarrow$  does not partially prune stochastic transitions



Strongly enforceable advice: can be enforced by controller if the MDP is seen as a game  $\rightarrow$  does not partially prune stochastic transitions

 $\blacksquare$  The advice  $\psi$  can be encoded as a Boolean Formula

**The advice**  $\psi$  can be encoded as a Boolean Formula

QBF solver

• A first action  $a_0$  is compatible with  $\varphi$  iff

 $\forall s_1 \exists a_1 \forall s_2 \dots, \ s_0 a_0 s_1 a_1 s_2 \dots \models \psi$ 

Inductive way of constructing paths that satisfy the strongly enforceable advice  $\varphi$ 

**The advice**  $\psi$  can be encoded as a Boolean Formula

QBF solver

• A first action  $a_0$  is compatible with  $\varphi$  iff

$$\forall s_1 \exists a_1 \forall s_2 \dots, \ s_0 a_0 s_1 a_1 s_2 \dots \models \psi$$

Inductive way of constructing paths that satisfy the strongly enforceable advice  $\varphi$ 

#### Weighted sampling

- $\blacksquare$  Simulation of safe paths according to  $\psi$
- Weighted SAT sampling (Chakraborty, Fremont, Meel, Seshia, & Vardi, 2014)

## MCTS under advice

#### MCTS under advice



Select actions in the unfolding pruned by a selection advice \(\varphi\)
Simulation is restricted according to a simulation advice \(\psi\)

#### Convergence properties

With UCT (Kocsis & Szepesvári, 2006) as the selection strategy:

- The probability of choosing a suboptimal action converges to zero
- $v_i$  converges to the real value of  $a_i$  at a speed of  $(\log n)/n$

The convergence properties are maintained:

- for all simulation advice
- for all selection advice which

#### Convergence properties

With UCT (Kocsis & Szepesvári, 2006) as the selection strategy:

- The probability of choosing a suboptimal action converges to zero
- $v_i$  converges to the real value of  $a_i$  at a speed of  $(\log n)/n$

The convergence properties are maintained:

- for all simulation advice
- for all selection advice which ...
  - are Strongly enforceable advice

#### Convergence properties

With UCT (Kocsis & Szepesvári, 2006) as the selection strategy:

- The probability of choosing a suboptimal action converges to zero
- $v_i$  converges to the real value of  $a_i$  at a speed of  $(\log n)/n$

The convergence properties are maintained:

- for all simulation advice
- for all selection advice which
  - are Strongly enforceable advice
  - satisfy an optimality assumption: does not prune all optimal actions

### Experimental results

#### Experimental results



#### Figure: 9x21 maze, 4 random ghosts

| Algorithm              | % of win | % of loss | % of no result <sup>1</sup> | % of food eaten |
|------------------------|----------|-----------|-----------------------------|-----------------|
| MCTS                   | 17       | 59        | 24                          | 67              |
| MCTS+Selection advice  | 25       | 54        | 21                          | 71              |
| MCTS+Simulation advice | 71       | 29        | 0                           | 88              |
| MCTS+both advice       | 85       | 15        | 0                           | 94              |
| Human                  | 44       | 56        | 0                           | 75              |

<sup>1</sup>after 300 steps

- Compiler LTL  $\rightarrow$  symbolic advice
- Study interactions with reinforcement learning techniques (and neural networks)
- Weighted advice

- Compiler LTL  $\rightarrow$  symbolic advice
- Study interactions with reinforcement learning techniques (and neural networks)
- Weighted advice

## Thank You