The Parameter-Synthesis Problem for One-Counter Automata

Ritam Raha

(joint work with Guillermo A. Pérez)

HIGHLIGHTS 2020
One-Counter Automata

n = 5
n = max(0, n - 5)
if n = 0:
 while n < 10:
 n = n + 1
 n = n + 100
 #make_progress
else:
 assert(False)
Let $n = 5$. Then $n = \max(0, n - 5)$. If $n = 0$, while $n < 10$, $n = n + 1$, $n = n + 100$, and make_progress. Else, assert(False).
One-Counter Automata

```python
n = 5
n = max(0, n - 5)
if n == 0:
    while n < 10:
        n = n + 1
        n = n + 100
    # make_progress
else:
    assert(False)
```

- Configurations: \((q, c), c \geq 0;\)
```python
def foobar(x):
    n = 5
    n = max(0, n - x)
    if n == 0:
        while n < 10:
            n = n + 1
            n = n + 100
        #make_progress
    else:
        assert(False)
```
def foobar(x):
 n = 5
 n = max(0, n - x)
 if n == 0:
 while n < 10:
 n = n + 1
 n = n + 100
 # make_progress
 else:
 assert (False)
Parametric One-Counter Automata

\[X = \{x_1, \ldots, x_n\} \]

\[\text{false} \]

\[\begin{align*}
5 & \rightarrow \neg x_1 \rightarrow = 0 \rightarrow \geq x_2 \rightarrow +x_3 \rightarrow \\
& \downarrow \geq 1 \quad \uparrow \text{+1} \\
\end{align*} \]
Parametric One-Counter Automata

$X = \{x_1, \ldots, x_n\}$

\[5 - x_1 = 0 \geq x_2 + x_3 \geq 1 \]

Definition (Succinct OCA with Parameters)

\[\mathcal{A} = (Q, q_{in}, T, \delta, X) \]

\[\delta : T \rightarrow Op \text{ with } Op \text{ the union of} \]

- \(CU := \{+a : a \in \mathbb{Z}\}\)
- \(PU := \{-x : x \in X\}\)
- \(CT := \{=0, \geq a, =a : a \in \mathbb{Z}\}\)
- \(PT := \{=x, \geq x : x \in X\}\)
Definition (Succinct OCA with Parameters)

\[\mathcal{A} = (Q, q_{in}, T, \delta, X) \]

\(\delta : T \rightarrow Op \) with \(Op \) the union of

- \(CU := \{+a : a \in \mathbb{Z}\} \)
- \(CT := \{=0, \geq a, = a : a \in \mathbb{Z}\} \)
Definition (Succinct OCA with Parameters)

\[A = (Q, q_{in}, T, \delta, X) \]

\[\delta : T \rightarrow Op \text{ with } Op \text{ the union of} \]

- \(CU := \{+a : a \in \mathbb{Z}\} \)
- \(CT := \{= 0, \geq a, = a : a \in \mathbb{Z}\} \)
- \(PU := \{+x, -x : x \in X\} \)
- \(PT := \{= x, \geq x : x \in X\} \)
Definition (Succinct OCA with Parameters)

\[\mathcal{A} = (Q, q_{in}, T, \delta, X) \]

\(\delta : T \to Op \) with \(Op \) the union of

- \(CU := \{ +a : a \in \mathbb{Z} \} \)
- \(PT := \{ =x, \geq x : x \in X \} \)
- \(CT := \{ =0, \geq a, = a : a \in \mathbb{Z} \} \)
- \(PU := \{ +x, -x : x \in X \} \)

Non-parametric: \(X = \emptyset \)
Decision Problems

\[\exists V : X \rightarrow \mathbb{N} \text{ s.t. } \exists \rho, (q_{in}, 0) \xrightarrow{\rho} \bigvee q_f \]
Decision Problems

Reach

\[\exists V : X \rightarrow \mathbb{N} \text{ s.t. } \exists \rho, \ (q_{in}, 0) \xrightarrow{\rho} \bigvee q_f \]

Non-parametric: \ NP-complete

Parametric: \text{in NEXP (reduction to EPAD)}

(Hasse et al. '09)
Decision Problems

Non-parametric: NP-complete

Parametric: in NEXP (reduction to EPAD)

(Hasse et al. ’09)
Decision Problems

Reach

\[\exists V : X \rightarrow \mathbb{N} \text{ s.t. } \exists \rho, (q_{\text{in}}, 0) \xrightarrow{\rho} V q_f \]

Synthesis

\[\exists V \text{ s.t. all infinite } \rho \text{ from } (q_{\text{in}}, 0) \text{ satisfy some } \omega\text{-regular property?} \]

Reachability-Safety-Büchi-coBüchi-LTL

Non-parametric: NP-complete

Parametric: in NEXP (reduction to EPAD)

(Hasse et al. ’09)

Non-parametric: coNP-complete

Parametric: ?-in N^3EXP (Lechner’15)

- Reduction to \(\exists \forall\) R\text{PAD} (Bozga-Iosif’05)
Decision Problems

Reach
\[\exists V : X \rightarrow \mathbb{N} \text{ s.t. } \exists \rho, (q_{in}, 0) \xrightarrow{\rho} V q_f \]

Synthesis
\[\exists V \text{ s.t. all infinite } \rho \text{ from } (q_{in}, 0) \text{ satisfy some } \omega \text{-regular property?} \]

Reachability-Safety-Büchi-
coBüchi-LTL

Non-parametric: NP-complete

Parametric: in NEXP (reduction to EPAD)
(Hasse et al. ’09)

Non-parametric: coNP-complete

Parametric: ?
Decision Problems

Reach

\[\exists V : X \rightarrow \mathbb{N} \text{ s.t. } \exists \rho, (q_{in}, 0) \xrightarrow{\rho} V q_f \]

Synthesis

\[\exists V \text{ s.t. all infinite } \rho \text{ from } (q_{in}, 0) \text{ satisfy some } \omega \text{-regular property?} \]

Reachability-Safety-Büchi-coBüchi-LTL

Non-parametric: NP-complete

Parametric: in NEXP (reduction to EPAD)

(Hasse et al. ’09)

Non-parametric: coNP-complete

Parametric: ?

- in N3EXP (Lechner’15)
- Reduction to \(\exists \forall_R PAD \) (Bozga-Iosif’05)
Our Contributions

- We prove that $\exists \forall_R PAD$ is undecidable. The synthesis problems become open.
- We define BIL(Bozga-Iosif-Lechner) fragment and show that it is decidable.
- We prove that synthesis problems are in N^2EXP by reduction to BIL.
- We also consider OCAPT (only tests are parametric). Adapting and modifying ideas from Bollig et al.’19 we show that synthesis problem of OCAPT is in NP.
Our Contributions

- We prove that $\exists \forall_R PAD$ is undecidable. The synthesis problems become open.
- We define BIL (Bozga-Iosif-Lechner) fragment and show that it is decidable.
Our Contributions

- We prove that $\exists \forall_R PAD$ is undecidable. The synthesis problems become open.
- We define BIL (Bozga-Iosif-Lechner) fragment and show that it is decidable.
- We prove that synthesis problems are in $N2EXP$ by reduction to BIL.
Our Contributions

- We prove that $\exists \forall R PAD$ is undecidable. The synthesis problems become open.
- We define BIL (Bozga-Iosif-Lechner) fragment and show that it is decidable.
- We prove that synthesis problems are in N2EXP by reduction to BIL.
- We also consider OCAPT (only tests are parametric). Adapting and modifying ideas from Bollig et al.’19 we show that synthesis problem of OCAPT is in NP^{NP}.

Idea. Reduction to non-emptiness of Alternating two-way automata.