Efficiently Testing Simon’s Congruence

Paweł Gawrychowski ¹ Maria Kosche ² Tore Koß ²
Florin Manea ² Stefan Siemer ²

¹University of Wrocław
²Göttingen University

September 16, 2020
Subsequences

\[w_{b\ a\ c\ b\ a\ a\ b\ a\ d\ a} \]
Subsequences
Subsequences

\[w = b a c b a a b a d a \]
Subsequences
Subsequences

$w[i_1, i_2, i_3, \ldots, i_k]$

Subsequence

We call w' a subsequence of length k of a word w, where $|w| = n$, if there exist positions $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, such that $w' = w[i_1]w[i_2]\cdots w[i_k]$.

Set of Subsequences of length k

Let $S\mathcal{F}_{\leq k}(i, w)$ denote the set of subsequences of length at most k of $w[i : n]$. Accordingly, the set of subsequences of length at most k of the entire word w will be denoted by $S\mathcal{F}_{\leq k}(1, w)$.

Example: $S\mathcal{F}_2(1, abaca) = \{aa, ab, ac, ba, bc, ca\}$

$S\mathcal{F}_{\leq 2}(1, abaca) = \{a, b, c, aa, ab, ac, ba, bc, ca\}$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

(ii) Let $i, j \in w$. We define $i \sim_k j \ (w.r.t. w)$ if $w[i:n] \sim_k w[j:n]$, and we say that the positions i and j are k-equivalent.

(iii) A word u of length k distinguishes w and w' w.r.t. \sim_k if u occurs in exactly one of the sets $SF_{\leq k}(1, w)$ and $SF_{\leq k}(1, w')$.
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $S_{F_{\leq k}}(1, w) = S_{F_{\leq k}}(1, w')$.

Example: $w = abacab$, $w' = baacabba$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

Example: $w = abacab, w' = baacabba$

$$SF_2(1, w) = \{aa, ab, ac, ba, bb, bc, ca, cb\}$$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

Example: $w = abacab$, $w' = baacabba$

$$SF_2(1, w) = \{aa, ab, ac, ba, bb, bc, ca, cb\}$$
$$SF_2(1, w') = \{aa, ab, ac, ba, bb, bc, ca, cb\}$$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

Example: $w = abacab, w' = baacabba$

$SF_2(1, w) = \{aa, ab, ac, ba, bb, bc, ca, cb\}$

$SF_2(1, w') = \{aa, ab, ac, ba, bb, bc, ca, cb\}$

$SF_2(1, w) = SF_2(1, w') \Rightarrow w \sim_2 w'$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

Example: $w = abacab, w' = baacabba$
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $\mathcal{SF}_{\leq k}(1, w) = \mathcal{SF}_{\leq k}(1, w')$.

Example: $w = abacab$, $w' = baacabba$

$$bbb \notin \mathcal{SF}_3(1, w), bbb \in \mathcal{SF}_3(1, w')$$
Simon’s Congruence

(i) Let \(w, w' \in \Sigma^* \). We say that \(w \) and \(w' \) are equivalent under Simon’s congruence \(\sim_k \) if \(SF_{\leq k}(1, w) = SF_{\leq k}(1, w') \).

Example: \(w = abacab, w' = baacabba \)

\[bbb \notin SF_3(1, w), bbb \in SF_3(1, w') \]

\[SF_3(1, w) \neq SF_3(1, w') \Rightarrow w \sim_3 w' \]
Simon’s Congruence

(i) Let $w, w' \in \Sigma^*$. We say that w and w' are equivalent under Simon’s congruence \sim_k if $SF_{\leq k}(1, w) = SF_{\leq k}(1, w')$.

(ii) Let $i, j \in w$. We define $i \sim_k j$ (w.r.t. w) if $w[i : n] \sim_k w[j : n]$, and we say that the positions i and j are k-equivalent.

Example: $w = abacab, w' = baacabba$
Simons Congruence

(i) Let \(w, w' \in \Sigma^* \). We say that \(w \) and \(w' \) are equivalent under Simons congruence \(\sim_k \) if \(SF_{\leq k}(1, w) = SF_{\leq k}(1, w') \).

(ii) Let \(i, j \in w \). We define \(i \sim_k j \) (w.r.t. \(w \)) if \(w[i : n] \sim_k w[j : n] \), and we say that the positions \(i \) and \(j \) are \(k \)-equivalent.

(iii) A word \(u \) of length \(k \) distinguishes \(w \) and \(w' \) w.r.t. \(\sim_k \) if \(u \) occurs in exactly one of the sets \(SF_{\leq k}(1, w) \) and \(SF_{\leq k}(1, w') \).

Example: \(w = abacab, w' = baacabba \)
Problem Definition

SimK
Given two words s and t over an alphabet Σ, with $|s| = n$ and $|t| = n'$, with $n \geq n'$, and a natural number k, decide whether $s \sim_k t$.

MaxSimK
Given two words s and t over an alphabet Σ, with $|s| = n$ and $|t| = n'$, with $n \geq n'$, find the maximum k for which $s \sim_k t$.
History

- Line of research originating in the PhD thesis of Imre Simon from 1972
- Long history of algorithm designs and improvements for associated problems. State of the art: \(\text{SimK} \) optimal linear time [DLT 2020] \(\text{MaxSimK} \) \(O(n \log n) \) time [DLT 2020].
- Today: an optimal linear-time algorithm for the \(\text{MaxSimK} \) problem.
Simon-tree
Equivalence Classes

\[
SF_k(i, w) \supset SF_k(l, w) \supset SF_k(j, w)
\]

▶ Splitting a word suffixwise into blocks of equivalence classes w.r.t. \(\sim_k \)

▶ If \(i \sim_k j \), then \(SF_k(i, w) = SF_k(l, w) = SF_k(j, w) \)
and we say that \(i, l, \) and \(j \) are in the same \(k \)-block

▶ \(\sim_{k+1} \) is a refinement of \(\sim_k \)

▶ Index \(i \) is a \((k + 1) \)-splitting position if \(i \sim_k i + 1 \) but not \(i \sim_{k+1} i + 1 \)
Equivalence Classes

Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i : n]) = \text{alph}(w[j : n]) \) for any \(i, j \in w \)

→ We can go from right to left through the word and determine 1-splitting positions
Equivalence Classes

Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i : n]) = \text{alph}(w[j : n]) \) for any \(i, j \in w \)

\(\rightarrow \) We can go from right to left through the word and determine 1-splitting positions

\[
\begin{array}{cccccccc}
 & b & a & c & b & a & a & b & a & d & a \\
\end{array}
\]
Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i : n]) = \text{alph}(w[j : n]) \) for any \(i, j \in w \)

\(\rightarrow \) We can go from right to left through the word and determine 1-splitting positions
Equivalence Classes

Use these properties to build a block structure for a word

1. $i \sim_1 j$ iff $\text{alph}(w[i : n]) = \text{alph}(w[j : n])$ for any $i, j \in w$

 \rightarrow We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block into $(k + 1)$-blocks by going from right to left through the block (without its last letter) and determine $(k + 1)$-splitting positions exactly as for 1-splitting positions.

\[
\begin{array}{cccccccc}
 b & a & c & b & a & a & b & a & d & a \\
\end{array}
\]

1-blocks
Equivalence Classes

Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i:n]) = \text{alph}(w[j:n]) \) for any \(i, j \in w \)

→ We can go from right to left through the word and determine 1-splitting positions

2. Split a \(k \)-block into \((k + 1)\)-blocks by going from right to left through the block (without its last letter) and determine \((k + 1)\)-splitting positions exactly as for 1-splitting positions.

1-blocks

\[
\begin{array}{cccccccc}
\text{w} & b & a & c & b & a & a & b & a & d & a \\
\end{array}
\]
Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i:n]) = \text{alph}(w[j:n]) \) for any \(i, j \in w \)

 → We can go from right to left through the word and determine 1-splitting positions

2. Split a \(k \)-block into \((k + 1)\)-blocks by going from right to left through the block (without its last letter) and determine \((k + 1)\)-splitting positions exactly as for 1-splitting positions.
Equivalence Classes

Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i : n]) = \text{alph}(w[j : n]) \) for any \(i, j \in w \)
 → We can go from right to left through the word and determine 1-splitting positions

2. Split a \(k \)-block into \((k + 1) \)-blocks by going from right to left through the block (without its last letter) and determine \((k + 1) \)-splitting positions exactly as for 1-splitting positions.

2-blocks

\[
\begin{array}{cccccccccccc}
 & b & a & c & b & a & a & b & a & d & a \\
\end{array}
\]
Equivalence Classes

Use these properties to build a block structure for a word

1. \(i \sim_1 j \) iff \(\text{alph}(w[i:n]) = \text{alph}(w[j:n]) \) for any \(i, j \in w \)
 → We can go from right to left through the word and determine 1-splitting positions

2. Split a \(k \)-block into \((k + 1) \)-blocks by going from right to left through the block (without its last letter) and determine \((k + 1) \)-splitting positions \textbf{exactly} as for 1-splitting positions.

2-blocks
Equivalence Classes

Use these properties to build a block structure for a word

1. $i \sim_1 j$ iff $\text{alph}(w[i : n]) = \text{alph}(w[j : n])$ for any $i, j \in w$

 \rightarrow We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block into $(k + 1)$-blocks by going from right to left through the block (without its last letter) and determine $(k + 1)$-splitting positions exactly as for 1-splitting positions.

\[
\begin{array}{cccccccc}
 w & b & a & c & b & a & a & b & a & d & a \\
\end{array}
\]
Equivalence Classes

Use these properties to build a block structure for a word

1. $i \sim_1 j$ iff $\text{alph}(w[i : n]) = \text{alph}(w[j : n])$ for any $i, j \in w$
 → We can go from right to left through the word and determine 1-splitting positions

2. Split a k-block into $(k + 1)$-blocks by going from right to left through the block (without its last letter) and determine $(k + 1)$-splitting positions **exactly** as for 1-splitting positions.

3-blocks

\[
\begin{array}{cccccccc}
 w & b & a & c & b & a & a & b & a & d & a \\
 \hline
 & & & & & & & & & &
\end{array}
\]
Simon-tree Definition

- New data structure: Simon-tree
- Represents presented block structure
- Efficiently partition positions of a given word
- Construction takes linear time
<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

bacbaabada

$[1 : 10]$

bac

$[1 : 3]$

b

$[1]$

a

$[2]$

c

$[3]$

baab

$[4 : 7]$

b

$[4]$

aa

$[5 : 6]$

b

$[7]$

a

$[8]$

d

$[9]$

a

$[10]$

$[k = 0]$

$[k = 1]$

$[k = 2]$

$[k = 3]$
Simon-tree Definition

The *Simon-tree* T_w associated to the word w, with $|w| = n$, is an ordered rooted tree. The nodes represent k–blocks of w, for $0 \leq k \leq n$, and are defined recursively.

▶ The root corresponds to the 0-block of the word w, i.e., the interval $[1 : n]$.

▶ For $k > 1$ and for a node b on level $k - 1$, which represents a $(k - 1)$-block $[i : j]$ with $i < j$, the children of b are exactly the blocks of the partition of $[i : j]$ in k-blocks, ordered decreasingly by their starting position.

▶ For $k > 1$, each node on the level $k - 1$ which represents a $(k - 1)$-block $[i : i]$ is a leaf.
Algorithm: Build the Simon-tree right to left as the word is traversed right to left. Only the leftmost branch is edited during construction.

1. The level (block), where a new position/letter should be assigned to (resp., belongs to), is computed efficiently.
2. Insert the new position/letter into the tree by moving up the leftmost branch from leaf to root.
3. Close traversed blocks on the path until the level for the new position/letter is reached.
4. Insert the new position/letter as a leftmost child on its corresponding level.
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Simion-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$k = 0$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[k = 0\]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$ \infty$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

...$

$[11]$

$k = 0$

$[11]$

$k = 1$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

...$

11]

$k = 0$

$\ [11]$

$k = 1$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[\ldots \] ∞ \[\ldots \] ∞

\[\ldots \]$^k = 0$

\[\ldots \]$^k = 1$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$ k = 0 $

$ k = 1 $
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
\ldots \$ \\
11] \\
\ldots \text{d} \\
9] \\
[10] \\
k = 0 \\
\ldots \text{a} \\
[10] \\
k = 1 \\
\$ \\
\end{array} \]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

...$

11

...d

9

[9]

a

[10]

[11]

$

k = 0

k = 1
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$X_{4,5,\infty,7,6,8,\infty,10,\infty,\infty,\infty}$

$k = 0$

$k = 1$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

\ldots $\ldots d$

$9 [10] [11]$

$k = 1$

$\ldots a$

$8 [9]$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\ldots $\$

11

\ldots d

9

[10]

[11]

a

$\$

k = 0

\ldots a

8

[9]

d

9

[10]

[11]

$k = 1$

$k = 2$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccccc}
11] & \ldots$ & \\
7] & \ldots b & \\
8:9] & \text{ad} & \\
[9] & \text{d} & \\
[8] & \text{a} & \\
[7] & \text{b} & \\
\end{array}
\]

\[
k = 0
\]

\[
k = 1
\]

\[
k = 2
\]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

\[
\begin{array}{c}
\ldots\$
\end{array}
\]

\[
\begin{array}{c}
11]
\end{array}
\]

$k = 1$

\[
\begin{array}{c}
\ldots b
\end{array}
\]

\[
\begin{array}{c}
\ldots \text{ad}
\end{array}
\]

\[
\begin{array}{c}
\ldots a
\end{array}
\]

\[
\begin{array}{c}
\ldots $
\end{array}
\]

$k = 2$

\[
\begin{array}{c}
\ldots b
\end{array}
\]

\[
\begin{array}{c}
\ldots [8:9]
\end{array}
\]

\[
\begin{array}{c}
\ldots [10]
\end{array}
\]

\[
\begin{array}{c}
\ldots [11]
\end{array}
\]
Simon-tree Construction

\[
\begin{array}{cccccccccccc}
\text{position} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
w & b & a & c & b & a & a & b & a & d & a & \$
\hline
X & 4 & 5 & \infty & 7 & 6 & 8 & \infty & 10 & \infty & \infty & \infty
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\text{tree structure}
\end{array}
\]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

- $k = 0$

```
  ...$
   11]
```

- $k = 1$

```
  ...b
  7]
```

```
  ...a
  [6]
```

```
  b
  [7]
```

```
  a
  [8]
  [9]
```

```
  d
  [10]
  [11]
```

- $k = 2$

```
  a
  [6]
```

```
  ad
  [8:9]
```

```
  a
  [10]
```

```
  $$
  [11]
```

```
  k = 0
```

```
  k = 1
```

```
  k = 2
```
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>a</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{position} & \quad 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\text{w} & \quad b & a & c & b & a & a & b & a & d & a & $ \\
\text{X} & \quad 4 & 5 & \infty & 7 & 6 & 8 & \infty & 10 & \infty & \infty & \infty \\
\end{align*}
\]

\ldots ∞

$k = 0$

$\ldots b$

∞

$k = 1$

$\ldots a$

∞

$k = 2$

$\ldots a$

∞

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[k = 0 \]

\[k = 1 \]

\[k = 2 \]

\[k = 3 \]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

...$

11]

...b

7]

...b

aa

b

[5:6] [7] [8] [9]

...b

a

[5]

a

[6]

[8:9] [10] [11]

$

k = 0

k = 1

k = 2

k = 3
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

\[k = 0 \]
\[k = 1 \]
\[k = 2 \]
\[k = 3 \]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$ k = 0$

$ k = 1$

$ k = 2$

$ k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

\[k = 0 \]

\[k = 1 \]

\[k = 2 \]

\[k = 3 \]
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$ k = 0

$ k = 1

$ k = 2

$ k = 3 $
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

- $k = 0$
- $k = 1$
- $k = 2$
- $k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

$k = 0$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>$</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>$</td>
<td>10</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

bacbaabada$

[1 : 11]

bac

[1:3]

b
[1]

a
[2]

c
[3]

baab

[4 : 7]

b
[4]

a
[5]

aa
[5:6]

b
[6]

ad

[8:9]

a
[8]

$
[11]
k = 0

[k = 1

bacbaabada$

[1 : 11]

bac

[1:3]

b
[1]

a
[2]

c
[3]

baab

[4 : 7]

b
[4]

a
[5]

aa
[5:6]

b
[6]

ad

[8:9]

a
[8]

$
[11]
k = 1

bacbaabada$

[1 : 11]

bac

[1:3]

b
[1]

a
[2]

c
[3]

baab

[4 : 7]

b
[4]

a
[5]

aa
[5:6]

b
[6]

ad

[8:9]

a
[8]

$
[11]
k = 2

bacbaabada$

[1 : 11]

bac

[1:3]

b
[1]

a
[2]

c
[3]

baab

[4 : 7]

b
[4]

a
[5]

aa
[5:6]

b
[6]

ad

[8:9]

a
[8]

$
[11]
k = 3
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$X_4 5 \infty 7 6 8 \infty 10 \infty \infty \infty$

$k = 0$

$[1:10]$

$k = 1$

$k = 2$

$k = 3$
Simon-tree Construction

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>∞</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

$X = \{4, 5, \infty, 7, 6, 8, \infty, 10, \infty, \infty, \infty\}$

- $k = 0$
- $k = 1$
- $k = 2$
- $k = 3$
\begin{verbatim}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{position} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
w & b & a & c & b & a & a & b & a & d & a & $\$ \\
\hline
X & 4 & 5 & ∞ & 7 & 6 & 8 & ∞ & 10 & ∞ & ∞ & ∞ \\
\hline
\end{tabular}

\end{verbatim}

bacbaabada

\begin{verbatim}

[1 : 10]

bac
[1:3]

[1] b
[2] a
[3] c

baab
[4 : 7]

[4] b
[5:6] aa
[7] b

ad
[8:9]

[8] a
[9] d

[10]

[5] a
[6] a

k = 0

k = 1

k = 2

k = 3

\end{verbatim}
So far:
structure for one word representing the equivalence classes w.r.t. \sim_k

Now:
set two words in relation to each other by using their respective Simon-trees

MaxSimK

Given two words s and t over an alphabet Σ, with $|s| = n$ and $|t| = n'$, with $n \geq n'$, find the maximum k for which $s \sim_k t$.
Transform the words s and t into Simon-trees as shown.

Use the tree structure to connect equivalent nodes of the two words.
Connecting Two Simon-trees

- Transform the words s and t into Simon-trees as shown.
- Use the tree structure to connect equivalent nodes of the two words.

S-Connection
The k-node a of T_s and the k-node b of T_t are S-connected (i.e., the pair (a, b) is in the S-connection) if and only if $s[i:n] \sim_k t[j:n']$ for all positions i in block a and positions j in block b.
Starting from a larger relation (P-Connection) which contains the S-Connection, and refine it.

- The 0-nodes of T_s and T_t are P-connected.
- For all levels k of T_s, if the explicit or implicit k-nodes a and b (from T_s and T_t, respectively) are P-connected, then the i^{th} child of a is P-connected to the i^{th} child of b, for all i.
- No other nodes are P-connected.
From P-Connection to S-Connection
From P-Connection to S-Connection

How to refine the P-Connection:

- Let $k \geq 1$. Let a, b be k-blocks in the word t, resp. s, with $a \sim_k b$.
- Let a' be child of a, b' be child of b.
- $a' \sim_{k+1} b'$ if and only if there exists a letter x such that $s[\text{next}(a', x) + 1 : n] \sim_k t[\text{next}(b', x) + 1 : n']$.
From P-Connection to S-Connection
From P-Connection to S-Connection

From P-Connection to S-Connection
From P-Connection to S-Connection
From P-Connection to S-Connection
From P-Connection to S-Connection
From P-Connection to S-Connection
From P-Connection to S-Connection

![Diagram showing the transition from P-Connection to S-Connection with examples of abacab and baacabba strings and their corresponding connections.](Diagram.png)
Solution of MaxSimK: last level k where the k-blocks containing position 1 of the input words are equivalent.

- Distinguishing word can be obtained.
- By efficiently using union-find and split find data structures the algorithm achieves an optimal linear runtime.
Additional Notes and Analysis

- Solution of MaxSimK: last level k where the k-blocks containing position 1 of the input words are equivalent.
- Distinguishing word can be obtained.
- By efficiently using union-find and split find data structures the algorithm achieves an optimal linear runtime.
Solution of MaxSimK: last level k where the k-blocks containing position 1 of the input words are equivalent.

- Distinguishing word can be obtained.
- By efficiently using union-find and split find data structures the algorithm achieves an optimal linear runtime.

Thank you!