Positionality and strategy improvement for continuous payoffs

A. Kozachinskiy

University of Warwick, Coventry, UK

Highlights of L., G. and A. 2020
Infinite games on finite graphs

Fix a function $\phi: C^\omega \to \mathbb{R}$ (called a *payoff*). A ϕ-game consists of:

- $c, d, e, f \in C$
- Min and Max are shifting a pebble (Min in \triangle-nodes and Max in \square-nodes) along the edges. Infinitely many shifts.
- Zero sum: Min pays Max a fine of size $\phi(c_1c_2c_3\ldots)$, where c_1, c_2, c_3, \ldots are colors along trajectory of the pebble.

Definition

A payoff ϕ is *positional* if in all ϕ-games players can play optimally via a positional strategy.
Continuous payoffs

Definition
A payoff \(\phi : C^\omega \to \mathbb{R} \) is **continuous** if for any \(\alpha \in C^\omega \) and for any infinite sequence \(\beta_1, \beta_2, \beta_3, \ldots \in C^\omega \) the following holds. Assume that for any \(i \in \mathbb{N} \) we have that \(\alpha \) and \(\beta_i \) coincide in the first \(i \) elements. Then

\[
\phi(\alpha) = \lim_{i \to \infty} \phi(\beta_i)
\]

Can be defined by the cylinder topology, which is compact.

Examples: (multi)discounted payoff is continuous, Parity and Mean Payoff are not.
Characterizing positional payoffs

A payoff $\phi : C^\omega \rightarrow \mathbb{R}$ is called **prefix-monotone** if there are no $x, y \in C^*$ and $\alpha, \beta \in C^\omega$ such that

$$\phi(x\alpha) > \phi(x\beta), \quad \phi(y\alpha) < \phi(y\beta).$$

Theorem

Let $\phi : C^\omega \rightarrow \mathbb{R}$ be a continuous payoff. Then ϕ is positional if and only if ϕ is prefix-monotone.

![Diagram](image)

Figure: The “only if” part.
What else can be said

Generalizing some results for (multi)discounted payoffs.

- strategy improvement (all continuous positional payoffs)
- LP-type problems and subexponential randomized algorithms (all continuous positional payoffs).
- Strong bounds on strategy improvement (for generalized or non-linear discounted payoff).

What about stochastic games?

- Continuous + stochastically positional \implies (multi)discounted.
Thank you!